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THE ANALYTICAL SOLUTION OF MEAN STREAM LINE METHOD

FOR TWO-DIMENSIONAL CASCADES -

SOME DEVELOPMENTS OF THE MEAN STREAM LINE METHOD I*

Tsay Ruey-shen

(Tsing hua University)

Abstract

This paper presents an improvement for
the mean-stream line method - using the
analytical solution. This method can drasti-
cally speed up the calculation and increase
the accuracy of the calculation. In this
paper it presents simple eauations and tables
of functions for convenience of calculation
as well as examples of such calculation. In
order to convenience the designing, this paper
also analyzes preliminarily as to how the
design parameters should be chosen in order
to obtain the desired turbine blade shape.
Using these methods and related information,
it can be done in one day to complete the
design of a good turbine cascade circulated
by compressible flow (if only calculation of
incompressible flow is necessary, the speed
of computation can still be rised several
time). This paper finally also gives a
comparison between its results and the
experimental data and presents several possible
directions under which the mean-stream line
method can still be further developed.

SYMBOLS

A - trigonometric function of 6

a - width of the exit in the throat region in the duct
between blades

*This paper has been presented in the First National Meeting
of Engineering Thermal Physics in August, 1965.
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B - trigonometric function of B, or the width of the

blade in the Z direction

b - arc length of the blade

C - trigonometric function of B

Cp - isobaric specific heat of the gas

D - diameter of the inner circle of the duct between blades

G trigonometric function of 6

H - trigonometric function of a

i - enthalpy of the gas

1 - blade surface or the arc length of the blade surface

M - Mach number of the gas flow

n - the distance in z-direction of the front fringe of the
blade at the point where the thickness in the y-direction
is the maximum

P - trigonometric function of B

p - pressure of the gas

q - an arbitrary physical quantity

R - gas constant

r - radius

T - trigonometric function of B

t - cascade distance of blade cascade

W - gas flow velocity

y - coordinate direction (direction of the forehead line
of the cascade)

z - coordinate direction (axial direction of the turbine
machinery)

Ay the absolute value of the distance in the y direction
between the mean-stream line and the surface of the
blade

B - an angle (starting from the z-coordinate and giving
counter clockwide)

6 - the thickness of the blade in the y-direction at any
point

y - ratio of specific heats of gas

1) - a constant

A - a constant; or the gas flow velocity divided by the
critical velocity, i.e. velocity coefficient

e - a constant
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p - the density of -as

w - a function

SUPERSCRIPTS

* - relative value (divided by the inlet parameter)

- derivative with respect to z

- parameter at the rear forehead line of the cascade

SUBSCRIPTS

o - stagnation value

1,2,
3.. .n - different functions or constants

B - incompressible

e - far away downstream of the cascade

i - far away upstream of the cascade

m - values on the mean-stream line or values on any
selected stream line

max - maximum value

p - inner arc of the blade

s - back arc of the blade

y - y-direction component

z - z-direction component

60% - values on the stream line which has a 60% flow of that
at the back arc.

I. Mean-Stream Line Method

The condition of the gas flow circulation through the

planar cascade has an extremely large effect on the character-

istics of the turbine machinery. Therefore the calculation

of the condition of gas flow circulation for a given planar

cascade (Forward Problem) and the designing of a planar cas-

cade which has good aerodynamic properties and satisfies cer-

tain actual requirements (reverse problem) are both important

.. .. .. .. ...r ... .. ..."11' . . " .. ... , - ' , 3. .



subjects to study for people working in the turbine machinery.

Up to date, there has been a lot of work done in this area.

There are various methods available. Among them there are

methods which are based on rclatively rigorous theoretical

basis such as the conformal transformation method and so on.

However, the actual calculation load is relatively large.

In addition, it is very difficult to extend to compressible

flow and flow on an arbitrarily revolving surface. Pure

numerical solution has been used to consider the compressibility

of gases but the computational load is too large and it

casually requires an electronic computer to carry out the com-

putation. Therefore, on the other *,,.,d, some relatively simple

approximation methods energed. For example, the mean-stream

line method proposed by Professor Wu Ching-hua is one of

the effective methods to calculate planar cascades. It has a

relatively sophisticated theoretical basis to easily consider

the compressibilities of gases. Its computational load is not

large and results with sufficient accuracy can be obtained

rapidly. In addition, the thickness distribution required in

the design work can be easily found in order to assure the

strength, rigidity, and cooling requirements. Besides, it

can be extended to the more generalized conditions of flow on

an arbitrary revolving surface. Therefore, it has already

become a generally used computational method worldwide.

The essence of the mean stream line method is as follows:

If the shape of a stream line inside the duct of the cascade is

known (such as the mean stream line y = y(z) which equallym
divides the flow on the duct) and the variation pattern of any

gas flow parameter on it [such as (pirJ)=(z) ] (refer to

Figure 1), then it is possible to use the steady, isoentropic,

continuous, non-rotational, and ideal gas conditions in aero-

dynamics to derive the partial derivatives of various orders

of the gas parameters on that stream line with respect to the

Ii
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Figure 1. Design Variables in the
Mean Stream Line Method

I



y direction. The actually applicable equations are as

follows

P - p,( I - 2 1Y ()

Po Pi 2-
TV, = U'sin (2)
W, = 11Wcos 13 (3)

"- ,) d L ---tan P - ' (4(GW ) [ r Wv 1 4 (p ,) n
" - dz ( ) )

(a, 1 ) [di. + I. , ( _ tanR -,P .L,,, (5)

1)PWm2 *y 8, d (6)

( e21V )[~OP d (PII' 5 ) I4/d w~0

(L' .- --'>) - --a -,tan (7a)
d. - a - j a;-,- ,. -r) vy 8Y2

+ as 5y, 8II' OY 8fy 2 (8)

q ( Y )= .+ O'-y,) ( (, 2t + 3 
3,, (

The q in equation (9) can repoesent any one of the gas

flow parameters. In the actual calculations of the turbine

cascade, only the first three terms of the Taylor series

expansion will provide sufficient accuracy.

In order to solve the "Forward Problem", at the beginning

of the calculation it is necessary to estimate ym = y(z)

and (Piv,). = (z). under the given duct condition.

(0
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In Reference [1], it was believed that the center line

of the duct and be used as the first approximation of the

mean-stream line (the amount of flow equals on both sides of

this line) and the variation of the parameter PI', along the

mean stream line is inversely proportional to the y-direction

width of the duct (i.e.(prv)X= ,_)o On this basis of

these a preliminary calculation can be carried out. As for

whether its results are correct, we can integrate from z's on

the mean stream line along the y direction on both sides to

determine whether the obtained flow agrees with the incoming

flow. Reference [1] also gave a modification method when

disagreement was found. Later, in Reference [3], it presented

a method to more accurately estimate the position of the mean

streamline.

For the "Reverse Problem", if Ym= Y(z) and (p;,) =)(z)

are given, then all the flow parameters in the flow field can

of course be obtained. In the meantime, the boundary of the

duct (blade) can also be defined based on the concept of

equilibrium flow. Naturally, to obtain good cascades, ,= 31(-)

and(pW,),m= ,(z) also must have certain limitations and matching

relations. Reference [3] introduced a method using past exper-

ience to plot the shape of the blade and to obtain the

approximate variation regularity between the mean stream line

and the duct width. Afterwards, the preliminary calculation

is carried out followed by gradual improvements.

II. One Way to Increase the Computational

Speed and Accuracy

In the method of using existing mean stream line to

design cascades (the Reverse Problem), as described above,

because usually the mean stream line and the data of one para-

meter at several points on it are given (in the past PH,)

m-



was cbt'ilnd f rom con lor':tion of ,:. I-- i(I o thioekncz),

therefore the numerical differentlati-,n method is used to

calculate the deravativcs - - a _on, the stream line In

equations ( ) (a). This part of the calculation is more

time cons-uming and is ii.. f cult to obtain very high accuracy.

It is also easier to make mistakes. Fecause of the use of

numerical differentiation equations, the error- of one mis-

takenly calculated point will affect the accuracy of the

numerical values thereafter. References [1] - [3] suggested

the plotting of curves in a table after these derivatives are

calculated in order to discover mistakes early and to "polish"

the data.

The mean stream line method does not require many com-

putational terms which is one of its advantages. But at least

4 times of numerical differentiation must be calculated. If

the five point differentiation equation l l is used, then the

computation of each point involves 5 multiplications, 1 addi-

tion, and 1 division. In addition, in order to obtain a

certain significant figures with accuracy, it is necessary to

use more significant figures in the beginning of the calcula-

tion. This then becomes a barrier which may not necessarily

exist against increasing the computational speed. Besides, the

polishing in the numerical calculation, although is an effec-

tive method, yet it does not absolutely assure the accuracy

of the calculation. Therefore, it is natural to have the

following thoughts: Is it possible to change the design of

the mean stream line method from variation of parameters to

the analytical form? This allows the use of the analytical

method in the differentiations and the rearrangement afterwards

so that the complicated calculations described above can be

eliminated. By doing so it is not necessary to gradually carry

out calculations of numerical differentiation to reduce the

possibility of computational error. It is also not necessary

,-



to publish the computational results and can obtain the deri-

vatives to an arbitrary degree of accuracy desired. For

the logical point of view, this method has no difficulty in

the "Reverse Problem". As long as we can find the proper mean

stream line and the functional relationshin bet.:een the flow

parameter on it and the z-coordinate. These are not difficult

to obtain from the existing cascade data and the computational

experience acquired later. Of course, if the equations

expressed by the analytical form are too complicated then its

meaning is no longer significant. But from the follo,.ing

section, it can be seen that, to the contrary, the use of

analytical relations can simplify the equation itself which is

more advantageous in computation. Let us elaborate this analy-

tical method in the following.

III. Analytical Solution of the Reverse Problem

1. Incompressible Flow

Let us first take a look at the special solution to the

incompressible flow. At this time equations (1), (4), (5),

(7), and (7a) become the following, respectively. (The para-

meters in this section and in Table 2 in the Appendix are

with respect to the mean stream line. For convenience, the

subscript is omitted with exception of those specified in

the equations):

P: (10)

Vv tan co(12)

W [tan J dz (13)
/d z d y ') - - J-( --- V- cos'3

9MNO.I



(Jt211.' dy dy a-,,\ 8;1'

If we choose the analytical equation of the moan stream

line to be y=Y(z) In addition, we also choose W=W(z)

as the varying parameter of design instead of W,= W(z).

This is apparently possible in solving the reverse problem and

offers convenience in computation. It makes easier to control

the surface velocity distribution of the obtained blade shape.

Actually after PW,,=(o(z) and Y=Y(z) are given, then in

principle it is completely possible to transform into W-W(z).

Thus using equations (2), (3), and the above four equations

as well as tan .ft=y'(z) , it is possible to derive the equation

of the analytical solution. However, the operation is rather

complicated and the resulted equation is more difficult to

use. Therefore, it is better to obtain O=tan-'y'(z) 3=0(z)

from y = y(z) as the varying parameter and then differentiate

W and W with respect to z to carry out the derivation opera-y z

tion. It is then possible to get the simple equations of the

partial derivatives of W and W in the y direction.
y z

-- y - B , -IV. ' - B , - " IV ')

(16)
egg--,, B ,. -wV" + B,. -w' )

NA A B

where A 2, A 1 B6 are the simple trigonometric functions of

8. For example:

A,=cot;2 sin 0 (12 Cos:P- 5) (19)



A,,= -cos 5 (16 co5- 14 cos'5- 1) (20)

B,=CgkA(2 C0625- 1) (21)

B, = 2 cos2l sin 0 (22)

The remaining equations of B can be found in Table 3 in the

Appendix.

But in the actual application, it is more convenient to

calculate after the values of the partial derivatives of W2

and W are obtained. It is because that the former can be used

to determine the boundaries of the duct and the latter can be

used to directly obtain the velocity distribution with com-

bining the two velocity components to get the velocity. The

partial derivative value of W can be obtained as follows:

Since
W2 =IV Ir 11'2

Let us carry out first order and second order partial differ-

entiations on both sides of the above equation. After

rearrangement and simplification we get

#IV 01IV
', = sin C -  (23)

,a.v a-it' + 1 ((,_
-sin 4- Ms r + W (24)

then substituting equations (15) (18) into the two above

equations, we get

Oy) n-. aw (25)

-@' ' "=BII'';+ 2,."I~ ° + B,, "W'P' +B,,IV" +e,,r-
Ora, ( 26 )

where B _ B are all simple trigonometric functions of S.
7 13
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The actual equations can be round in Table 3 in the Appendix.

From these it is found that for incompressible flow the

first order and second order partial derivatives in the y

direction on the mean stream line are simple linear function

of the combination of products of W, B and their partial

derivatives with respect to z. Because the coefficients in

front of each term are all known simple trigonometric functions

of a, table (see Table 3 in the Appendix) can be prepared in

advance for future use. After doing so it is very quick to

calculate the partial derivatives in the y-directions on the

mean stream line. For incompressible flow, after the familiar-

ization of the process, it takes about or less than two hours

to calculate over ten points of a duct.

In the next step of determining the position of the

boundary of the duct, it is possible to use the partial deri-

vative values everywhere on the mean stream line and the con-

tinuity equation to derive a third order algebraic equation to

replace the numerical integration method used in the past.

Since
A!

0

and

TV. TV.. +2 OY2 '1Y

We can get

z~ OY 2,a,----/y=iw. (27)

Similarly
-, + I(A'L \ = -Lit,

dy)/ 6 C)Y3  
' 2 .. (28(28)

*'The W in these two equations represents the axial velocity
component in the direction of gas flow at any point in the

duct. It is different from the axial velocity component on the
mean stream line in other places of this section.



where absolute values are used for Ay, and -U-2 ,'

Of course, it is not a simple matter to rigorously solve

the third order algebraic equation (although it can be
**

obtained coipletely). But its approximate solution with

a certain accuracy can be easily obtained graphically or using

the interpolation method. Based on the experience in calcula-

tion, for blade of ordinary size (arc length in the order of

several tens mm), it is only necessary to suostitute the two

integer value in millimeters of Ay near the solution (the

approximate value can be estimated easily from the possible

shape of the blade) into equation (27) or (28) and then use

the linear interpolation method to obtain the solution which

is pretty accurate. After the boundary of the duct is known,

we can use equation (9) and W as well as its partial deriva-
m

tive value in the y-direction to obtain the velocity distri-

bution on the surface of the blade.

2. Compressible Flow

For compressible flow, it is also completely possible

to use a similar method as described above to obtain the

corresponding equations. As discussed before, at this time

we should find the partial derivatives of PIt', and W in the

y-direction and not those of Wy and Wz in order to make

further calculation more convenient. Equations (23) and (24)

are still valid at this time. We also noticed that:

-- - + y + i

d2(PV,) 2W, p IV,MP +2 - J V

* Recently, in Reference [7], it presented a method using
the concept of using the flow function to directly calculate
Ayp and Ays.
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Then from equations (1) -(8) after complicated operation, we

can obtain the following results:

""--dy -y-, -M (t~ P h (29)
1 _W).€) _-M(-w,'2

IV03I

AfY'B2 w(30)

- (31)

C121V ~ V IV, 3= +%13 I-± -B 01V'P' +B)V')+M4.YB 3 w- (32)

where every B is also a trigonometric function of B. The

actual equations can be found in Table 3 in the Arpendix.

From here it can be found that, for compressible flow

although there are so many terms yet it is also the addition

of some simple products. The coefficients of each term can be

tabulated in advance (see Table 3 in the Appendix) for use

later. Therefore, the computation is also relatively quick

and it takes a day or so to complete. The determination of

the position of the boundary of the duct at this time can also

use the third order algebraic equation and not the numerical

integral method:

,.a,; ], 2(pi'.) (33)
(PIV.).Ay, -- yP , +,' [A2 97 6[ 9d(PI': 2 (P',EN: (34)

When y=y(z) is given, the values of a, a' and 6" can

be obtained from the following equations:

P -tan-I'[' (35)

.a-- 1

' ii



" y' Co'= Bj' (36)

S--o (y-y.2 e in .C ) =B 7y 2-R, Y"' (37)

Therefore, when some ordinary geometric curves are used as the

mean stream line, the equations of each y-direction derivative

can also be simplified using the above three equations. Table

2 in the Appendix lists the equations under the special con-

ditions that the mean stream lines are six different curves,

respectively. The C1-C7, Pi-P 0, Ti-T 4 and H 1 -H3 etc. in the

equations ae also known trigonometric functions of B. The

expressions and values can be looked up in Table 3.

IV. Application Examples

In this section, we are using a high subsonic pulsed cas-

cade as an example whose design requires relatively compli-

cated computations. There are many terms to be omitted to

simplify the calculation.

The original data of the design are as follows:

Gas Paramaters before the Cascade:

stagnation temperature To= 324" K

stagnation density Po,=1.565 kg/m 3,

velocity wi= 180 m/sec

angle N =51. . ;

Gas Parameters behind the Cascade:

velocity JI',-264 m/sec

angle .-- 60 ;

The working medium is an ideal gas with Y--1.4



The geometric shape of the mean stream line selected in

the design: when f,,>0 , it is a circle with radius r = 50

mm. When 0 <0 , it is a suspended chain wave Y = 1coih(o)+X

(mm) where '1=-30.77 mm, 0=0.0255 1/mm, and A =80.7; mm.

When the combination of the two types of geometric curves

is used as the mean stream line, it is necessary to make sure

that the values of Ye,, a, P, and , are the same on both

sides of the junction of the two types of curves. Only by

doing so, the results obtained from the above equations will

be continuous (when only the first three terms of the Taylor

series are used). For ordinary simple geometric curves, this

requirement can not be met at any point.

The front and back forehead lines of the cascade are

selected right at the places where the 6m of the mean stream

line is equal to the given Bi and Be* For preliminary design,

this selection is the only natural choice. But from the dis-

cussion in the following section, we can see that this choice

should be recommended to be used in general.

The velocity distribution of the mean stream line in this

example is selected as follows: When fm>0 , use W = constant

= 200 m/sec. When P<0 , then let the velocity increase

following a cosine curve to the exit value (270 m/sec), i.e.

!W=235-35cos("-z 1) where ze is the value of z coordinate of

the back foreward line of the cascade. Although at P=0 W

and W' are continuous, W" is not continuous. The continuities

of W, W', and W" all should be required at the junction point

of various velocity variations. But it is generally not easy

to achieve. Therefore, for the velocity distribution on the

mean stream line in this example, we can imagine the following:

When P->0 , use a constant. When Oi,0' , use the cosine

curve as discussed above. As for the segment in the middle,

L



Table 1. Example of Computation

A~ -rsin 0 r Cos P200.0 0.000 0.0000 3 ~

9-'40* -32.14 38.30 200.0 0.000 0.0000 153.2

30* - 25.00 43.30 200.0 0.000 0.0000 173.2

20' -17.10 46.99 200.0 0.000 0.0000 187.9

20, - 8.68 49.24 200.0 0.000 0.0000 197.0

0.00 50.00 200.0 0.000 0.0000 200.0

-110 8. 74 49.20 - 203.6 0.808 0.0860 200.2

-20 17.60 46.84 213.9 1.457 0.0579 200.7

-S0* 26.77. 42.54 229. 1 1.804 0.0161 198.2

-40' 36.47 35.70 246.6 1.728 -0.0317 188.9

-50* 47.30 24.80 262.5 1.229 -0.0754 168.8

~i~5 53.35 16.87 267.9 0.626 -0,090, 1,53.6

235-35C03- 1. 83lsifl- x 0.90c x

!t6~ rre 6 -0 60 i

U '*l)~ '(/.* '~qj.~ 2 l

A 09___ ______________



Table 1 (continued)

/

SP IP p (V /X )13)I \ 2M (f' I 2 (/ -:

I bil M. ~Q 2 tz 9F Q 2 Jo
_ I _ _ _ /I 

______ I -.,e 6 , ;_I

0.606 0.855 1.339 205.0 0.571 -0.694 0.0716

0.606 0.855 1.339 232.0 0.571 -2.000 -1.021

0.606 0.655 1.339 251.5 0.571 -3.064 -1.913

0.606 0.855 1.339 23.5 0.571 -3.759 -2.494

0.606 0.855 1.339 267.8 0.571 -4.00n -2.696

0.617 0.849 1.330 266.0 0.582 -4.019 -2.616

0.:48 0.:35 1.308 262.7 0.613 -3.876 -2.247

0.694 0.811 1.271 252.0 0.661 -3.201 -1.401f

0.747 0.783 1.226 231.5 " 0.716 -1.864 -0.222

0.795 0.757 1.186 200.2 0.768 -0.274 0.766

0.811 0.747 1.171 179.8 0.785 +0.380 1.007

IT /P O
y  

Sy #

IPIP o. IP( 1 rI~ U)( f/ : (: / ' .)~ (;/ " !
P (*I*v)* (eI!r.. V 0)

_________________ 
__.4 

-I'-



Table 1 (continued)

-40 -0.0800 -0.1116 -3.064 0.0608 0.0608

3D* 0.0000 -0.0645 -3.464 0.1000 0.1000

20" 0.0800 -0.0155 -3.759 0.1320 0.1320

10" 0.1387 0.0214 -3.939 0.1528 0.1528I. 0.1600 0.0346 -4.000 0.1600 0.1600

-101 0.0792 -0,0104 -4.065 0.0808 0.1078

-20" 0.0820 -0.0347 -4.145 0.1008 0.1163

*-30" 0.0206 -0.0886 -3.983 0.0799 0.0812

-40" -0.0673 -0.1264 -3.326 0.0163 0.0079

-60* -0.0927 -0.0668 -2.186 -0.0385 -0.0477

-- -0.0734 -0.0361 -1.498 -0.0472 -0.0340

(2 r,,,, , I 2 T,pv) I In QP 2 S992 1tt
6~~~ ~ ~ jr= :3 r 066r-M " r( *2V~ I ~( V*

( I. I (P V.-)  )~*p dY2  B

21V *2

..J,



Table 1 (continued)

Ay, (mm) 1.y (nin) Yp (mm) y, (nini) it', (m/see! Iv, (m/see)

see eq. 3 3) see eq.:34) y, +Ayp y,.-Ay ] 9 3 13 )f3 r

I I
22.17 23.08 61.08 15.22 146.1 286.9

20.83 18.36 64.13 24.94 149.6 280.6

19.55 1621 66.54 30.78 151.8 278.3

18.82 15.17 68.06 34.07 153.0 277.3

18.61 14.88 68.61 35.12 153.3 277.2

18.96 15.19 68.16 34.01 146.5 277.3

18.92 15.49 65.76 31.35 156.3 292.0

19.32 16.82 61.86 25.72 167.4 307.6

20.16 19.59 55.86 16.11 180.2 313.1

21.59 24.26 46.39 0.54 204.3 301.5

23.21 27.87 40.08 -11.00 218.6 288.7

-I -_____ I____ J (
see eq.(33) see eq.(34) Y,, +AYP y,.-Ay, A-( 9) I33A- A( 9 ) 313

Ay. (mm) Ay, (mm) Y (nun) ", (mm) Wp (m/sec) 1, (m/sec)
____ __ ____ ___ ___ ___ ___I



Key to Table 1: 2. item, 3. z(mm), 4. y(mm), 5. w(m/sec),
C. ,:, .... , 7. (,./,..,ec mm2 ), 8. (m/sec), 9. equation,

10. cc. equiation (3), 11. equation, 12. Based on 6th column
of th, 3rd line in Table 2, 13. Based on 6th column of the
2nd i in ':.able 2, 111. see equation (3), 15. item, 16. z (mm),
17. y (mam), 18. W(m/sec), 19. W' (m/sec.rmi), 20. W"(m/sec.mm2 ),
21. W (m/sen), 22. p (kg/m3), 23. (k7/m 2 sec), 24. (m/sec.mm),
25. (r/sec.mm), 26. look up the table of aerodynamic functions
based on A, 27. look up the table of aerodynamic functions
based on X, 23. see the 2nd column in line 6 in Table 2, 29.
see the 2nd column in line 10 in Table 2, 30. look up the
table of aerodynamic functions based on A, 31. look up the
tab b of aerodynamic functions based on A, 32. see the 6th
column in line 6 in Table 2, 33. see the 6th column in line
10 in Table 2. 2
34. p(Kg/m3), 35. pWz (Kg/m sec), 36. (r1-/sec.mm), 37. N/sec.mm)
38. see col. 2 of line 7 in Table 2, 39. see col. 2 of line 11
in Table 2, 40. see col. 2 of line 8 in Table 2, 41. see col.
2 of line 9 in Table 2, 42. see col. 2 of line 12 in Table 2,
43. see col. 6 of line 7 in Table 2, 44.see col. 6 of line 11
in Table 2, 45. see col. 6 of line 8 in Table 2, 46. see col.
6 of line 9 in Table 2, 47. see col. 6 of line 12 in Table 2
48. use the first 3 terms of equation (9), 49. use the first
3 terms of equation (9), 50. use the first 3 terms of equation
(9), 51. use the first 3 terms of equation (9)
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a higher order of smooth curve is used as the transition.

Because the calculation points are always finite and discrete,

th-refrore h tr-nstlon condition in b~tw en calculation

points can have some degree of arbitrariness.* By how much

the vt]octl-'s at the entrance and exit on the mean stream

line are greater than the given velocity values in the front

and the tac: of the cascade, by how much the value of P11- at

the corrosnondinT: point is greater than the given values in

front and at the back of the cascade, also determines the[1]
extent of dullness at the front fringe of the blade. The

M number in this example is large, therefore, a sharper

design is used in order to avoid a partial supersonic effect

at the entrance.

The cascade distance in this example is 56.4 mm corre-

sponding to a cascade density of 1.8.

The computational results and procedures are shown in

Table 1 and Figures 2 and 3. From the calculated results, it

can be found that the coordinates of points on the surface

of the blade shape obtained using the analytical solution of

the mean stream line method are completely smooth. It is much

smoother than the solution obtained using the numerical method

(for example) refer to Reference [3]). This also indicates

that the accuracy of the solution is correspondingly higher.

Naturally, as described above, the speed of calculation is also

much faster.

For the design of a cascade, the blade profile obtained

in this example can be considered to be satisfactory: even

when the M number near the exit reaches 0.8, there is no

supersonic region in the entire duct. There is even sovne rrar-

gin (the maximum M number on the back arc of the blade profile

* The discontinuity of W at the junction still has some effect
on the smoothness of the calculated results. For example, the
variation of A in the region where o is not most ideal.

Yp

But the effect is small and the surface of the blade is still
smooth.



is about 0.94). The velocity distribution on the entire blade

is also satisfactory. The variation is uniform (H', . t-.

The compression gradient in the compression region which exists

in the exit zc ton of the bauk arc of an ordinary cascade

is not large. This indicates that the use of the method pre-

sented in this paper to design good planar cascades is com-

pletely possible.

.

Figure 2. The schematic of the blade profile obtained from
the sample calculation Bi - 51.20, e = -60 x = 0.8.

Key: 1. mean line of the inner contact circle inside the
duct, 2. mean stream line Ym = y(z), 3. coordination points

obtained from calculation.

(A .2.... " =o.394)

As for the gas exit angle, we can use the following

empirical equation from the designed black profile to verify:

(38)

where a is the width at the throat of the outlet of the duct

(see Figure 2). The obtained result is 0,=60.2 . It is

basically consistent with the design requirement.

.,
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Figure ii .- 1,-.. .rbution on the blade profile
obta .- , . - .calculation.
Key: i. .v.:, ar frinre, 3. calculated point, .
rear fx'.-, .: r cx arc, 6. stagnation point, 7. back arc,

. ' Selection of Variation

of the Design Variables

its - above, ;,,when using the mean stream line

method to ,1.-n planar cascades, the design variables can

be chosen :-r ,, th2 shape of the mean stream line and the velo-

city distribution on it (which includes the choices of the

points on th.-t stream line that intersect with the front and

back forehead lines and by how much the velocities at those

points are greater than the given velocity values in the front

and back of the cascade). Whether a good cascade can be

designed, the problem lies on the proper selection of these

design variables.

In order to acquire some preliminary experience in

designing, we have carried out many design calculations for

various types of blade profiles from different shapes of mean

stream lines and various velocity distributions on the mean

stream line. Because the solutions to the reverse problem of

the subsonic compressible flow is qualitatively very close to

that of the incompressible flow, therefore during the calcula-

tions most of the time we use the incompressible flow in order

.................... ~... . . ..... ............ . ............ ,. .".,";f, ...



to obtain more information for comparison more conveniently.

The f'uiwllig is a presentation of preliminary reconimendations

on the selection of design parameters based on the meaningful

results obtain.i-d from the information already in hand.

1. Pulsed Cascade

In the calculation, a comparison is carried out on the

different velocity distributions of pulsed blade family with a

circular mean stream line. The result obtained is: Regard-

less of whether the flow is compressible on incompressible and

the distribution of velocity on the mean stream line (as long

as the variation is not too large), the trend of variation of

the velocity distribution on both sides of the duct (that is

on both sides of the blade) is similar to that of the velocity

distribution on the mean stream line. This results can be

qualitatively explained as: because the curvature of a circle

is uniform everywhere, therefore the difference of the velo-

city at the boundaries of the duct is not too different from

that on the mean stream line. The typical conditions can be

seen in Figures 4 and 5*.

From these two figures, it is easy to find out that the

aerodynamic property is not good for the blade profile using

a circular arc as the entire mean stream line. Because that

the felocity distribution of the back arc is basically parallel

to that on the mean stream line, in the segment near the outlet

*For the convenience of referring to the blade, the velocity

distribution is plotted along the z direction rather than
along the surface of the blade profile starting from Figure 4.
Thus the absolute value of the gradient of velocity appears
larger in the front and back fringes - especially at the rear
fringe of the back arc. The actual velocity gradient I ': I
is actually much small. Please notice this point when
referring to all figures afterwards.

-



on the back arc of the blade there must be violent compression

and gas separation caused by it. In the internal combustion

turbine laboratory of Tsung hua University, we have carried

out a lo.. vcoclty ,;inch tunnel experiment on the planar cas-

case basically similar to the design shown in Figure 4. The

result showed that there is a separation region at the exit

of the back arc of the blade. The flow field behind the cas-

cade is extremely inhomogeneous.

When placing colored liquid in the separation region on

the back arc, we can use our naked eyes to observe the appear-

ance of whirlpools in this region. The liquid droplets adhere

to the blade in rotation and do not get blown away. These

indicate that the design using circular arc as the entire

mean stream line is not good.

But for ordinary pulsed cascades, the velocity variation

in front and behind the cascade is not large. It is naturally

proper to have less variation in the velocity distribution

on the mean stream line. There is not too much choice. The

velocity distribution on the back arc at this time is usually

desired to be flat and invariant at the beginning and then it

is followed by a segment of compression region with a velocity

gradient of a negative value which is not too large and

finally connects to the value of the exit velocity. There-

fore, for the beginning section of the duct in a pulsed cas-

cade, the use of a circular arc as the mean stream line and

taking the value of the velocity as a constant are recommended.

At this time the rising section of the back arc has a basically

flat distribution of velocity. After that we can find some

curves as the mean stream line to satisfy the latter require-

ment discussed above.

In order to compare the effect of the shape of the mean



stream line more conv':niently, the blade profiles of three

types of mean stream lines with constant velocity distribution

are shown in Figures C, 7, anl 8. The first halves (0r>0)

of the mean stream lines are all circular arcs and the rear

halves (,<o) are equi-angular variation curve in the z

direction (its analytical equation can be found in Table 2 of

the Appendix), suspended chain curve, and parabolic curve,

respectively. The junction point of various mean stream lines

is fixed at Pm-= 0 because only here it is convenient to make

the variations of 'i. .. and continuous.

From these three figures, we can see that in the latter

half of the duct where%,<0 , the effect of velocity distri-

bution on the back arc for the three mean stream lines is

different. When the mean stream line is a parabolic curve,

the velocity on the back arc initially drops rapidly and then

gradually flatens out. In the case of the suspended chain

curve, the situation is the uniformly compression along the

z direction. In the case of the equi-angular variation curve

in the z direction, the compression region is more concentrated

towards the rear (but as discussed above, the velocity distri-

bution is plotted in the z direction. When transformed into a

plot along the surface of the blade, due to the higher devia-

tion away from the axial direction in the rear of the blade,

the negative value of the velocity gradient is not too large).

If the circular arc is also used as the mean stream line in

the 11 1'0 region, then we will obtain situations in which the

compression region is concentrated even more towards the rear.

The velocity value on the back arc is basically the constant.

Only in a very short section near the outlet violent compression

occurs. From these four conditions, it seems that it is related

to the variation of the 0,- value (the corresponding curvature)

on their mean stream lines afteril,< 0 (refer to Table 2 in the

Appendix). The . of the equi-z-directional angular variation

ifi



curve in the z direction is a constant. The absolute value of'

=-0 (v, -- )c3', , for a su !pn .,d ch:in curve i_ beccr:.in.5

smaller in the z-direction (the absolute value of the term

(Y -A) ) is cetting larger, the term c' : 0 is g etting

smaller, but the latter is the dominant factor), its initial

compression this arrives faster. The absolute value of

-2 1 i, ., for the parabolic curve becomes smaller even

faster, therefore, the compression begins even more rapidly.

On the contrary, the absolute value of .=_± ...... for a

circular arc in the z direction is getting larger when P<o

The onset of its compression then is slower than that of the

equi-z-directional angular variation curve. -The effect of

using other ordinary curve as the mean stream line can also

be evaluated approximately based on this technique.

From the above figures, it can be found that for pulsed

cascades we can recommend a circle when <0 and an equi-z-

directional angular variation curve or a suspended chain curve

when P,<0 as the mean stream line. The choice between the two

latter ones should take the application condition of the cascade

into consideration. If the estimation shows that the velocity

distribution of the former will not cause separation, then it

is better to use the equi-z-directional angular variation

curve because the density can be reduced for the same cascade

distance, the width of the blade can also be decreased, and the

frictional loss of flow can be minimized.

As discussed above, for pulsed cascades, there is not too

much choice in the velocity distribution or the mean stream

line. If the M number is not too large, we can directly choose

the velocity distribution on the mean stream line as a straight

line or as a constant. If the maximum velocity is to be

reduced and the compression gradient is to be minimized to the

extent possible, then we can first choose the lowest possible
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Fig. 4. The blade profile and velocity distribution

when the mean stream line is a circle.
(M 0, ,=50% ', -61o.

1,.,45 4- -1.5,, - '= .2, --.-

-0.47)

Key: 1. W m/sec, 2. center line of the inner contact circle

of the duct, 3. mean stream line.

constant as the velocity on the mean stream line and then

use a certain curve to connect to the value at the rear

fringe (its selection will be shown later). For example, it

has been done this way in the above example. Another example

is shown in Figure 9. The given parameters, the shape of the

mean stream line, and the selection of the cascade distance

of this blade profile are the same as those in Figure 7. Only

the velocity distribution on the mean stream line is different.

Comparing these two examples, we can see the effect of this

change.



Fig. 5. The blade profile and velocity distribution
when the mean stream line is a circle.

(At,-0.2.,=, A, 5 % P =- 52 " " - .9.5, - - - .,2 s,,
. , - .50 

--

Key: 5. W m/se, 6. center line of the inner contact
circle of the duct, 7. mean stream line.

2. Reversed Cascade

There is little experience in using the mean stream line
method to design the reversed blade profiles [ 3 . Since the
mean stream lne and the velocity distribution on it are
simultaneously affecting it more significantly, it is thenmore difficult to analyze the effects. But we can be sure that
the qualitative effect of the mean stream line as discussedabove is still approximately 

cowrect. For the comparison of
the effect of velocity distribution on the mean stream line
at ths time, Figures r0, bl, and 12 show the results of threeblade profile designs with different velocity distributionson the mean stream line. (They are a straight line

aboe s sil aproimtel cwret. Fo the compj::an of

a second order parabolic curve and an

eights order polynomial ii', =4 z-.-, respectively), but

the other parameters remained the same. It is apparant

that, for the reversed cascade, the velocity gradient on the

30
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Figure 6. The blade pro- Figure 7. The blade profile and

file and velocity distri- velocity distribution when the
bution when the mean stream mean stream line is a circle!(P.>o)
line is a circle 0.,>o) and a suspended chain curve (0.<o)
and an equi-z-directional Key: 5. W m/sec, 6. center line
angular variation curve of the inner contact circle of the
(O.< 0) .duct, 7 mean stream line.
Key: 1. W m/sec,
2. center line of the
inner contact circle of
the duct, 3. mean stream
line.

mean stream line is generally positive. From these three

figures and some computational results, we found that: in

order to make the compression small in the most troublesome

area near the rear fringe of the back arc, we should choose

the smallest Wm ' value at that place possible. Wm" is a

negative number (Wm may be relatively larger at this time)

mi



as shown in 71isures 3 and 12. We should not uz. the smallest

Wm possible in front of the rear fringe as we might have

imagined. It would rapidly become larger as shown in Figure

21. Besides, we must also realize that, at the front and rear

fringes, in addition to Wm the values of Wm ' are also influ-

encing the thickness of the front and rear !'ringes signifi-

cantly. The front (rear) fringe has a larger Wm' than it

makes the from (rear) fringe thicker. This can be found by

comparing the blade profiles in Figures 10ft 12.

-a /

t W P

- \L

04( . i- % 0=o , - -60', 6-r--=~, 7

-2.13, --- 0-.2, , =0.306)

Figure 8. The blade profile and the velnnit, distribution of a
mean stream line which is a circle when (0>O) and a parabolic
curve when (0.<0). Key: 1. W m/sec, 2. "C~nter line of the
inner contact circle of the duct, 3.mean stream line.
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Just as pointed out in Reference [3], in the design of

reversed blade profile, it is more appropriate to use the

stream line which has 60% of the flow away from the back arc

as the mean stream line. When the analytical method is used

to carry out the design work, the same experience has been

verified. In addition to the fact that the mean stream line

is farther away from the inner arc as pointed out in Reference

13], this is also due to the better convergence towards the

back arc direction when using Taylor series to expand PV, .

Therefore, in the design of blade profiles of the reversed

type, it is recommended to use the 60' stream line of an

equi-z-directional angular variation curve or a suspended

chain curve. The velocity distribution on the stream line

should be the type which increases uniformly and becomes flat

at the rear fringe for better results. Another example of

blade profile with this type of design can be seen in Figure

13.

After the mean stream line is selected, as described

above, there is still this problem left to determine the posi-

tions of the front and rear fringes. The difficulty to

precisely obtain the shapes of the front and rear fringes to

satisfy the requirements of entrance and exit angles of the

gas is one disadvantage of the mean stream line method. But

based on the experience acquired from calculations, it should

be recommended to take the position of the rear fringe at

The value of °-, at this time is very close to

that of 6e' For all the calculations, it is within + 20.

If the gas exit angle of the black profile must be changed

by AP in order to satisfy a requirement after the design

work is completed, then it is recommended to preliminarily

change the 6m by *A0 at the rear fringe as an approximation.

Of course, we can also find the exit angle of the gas from the

33



momentum variation in the duct based on the velocity distri-

bution. But because the velocity distributions at tho front

and the rear fringes can not be obtained accurately at the

present time, it is still very difficult to accurately deter-

mine the exit angle of the gas using this method. The posi-

tion of the front fringe can be generally taken at 1,

This is more appropriate for the pulsed cascades. Because of

the larger gas entrance angle 6 at that time, the deviationC 1[14]
of the incoming flow by the cascade is smaller [

. In addi-

tion, since the mean stream line is located at the center of

the duct, the circular components of the deviation due to

blades on both sides can easily cancel each other. Besides, for

pulsed cascades which are denser, the slight change in the

gas entrance angle only affects the area near the front fringe.

The effect on the velocity distribution of the entire blade

profile is very small [ 5 ] . Even if there is some deviation, it

does not matter that much. For reversed cascades, the position

of the front fringe can be taken as m=tr.- Aa where '1

can be VO -101 preliminarily. When the gas entrance angle i
[1]

is smaller, then AF, must be larger

In the selection of the velocity distribution on

the mean stream line, the Wm values at the front and back

fringes are major factors which determine the thicknesses at

the front and back fringes. For conventional blade profiles,

It is recommended to take W,~l.1O.'LI, at the front fringe

and if, =(1.02.-1.o8)11,,, at the rear fringe. Naturally, a

large value of Wm should be used at the front or rear fringe

when thicker fringes are desired. In addition, the effect of

W I as discussed above should also be considered.
m

In the design of the cascades, the selection of cascade

distance can be made by referring to the existing cascade data.

But if the distance used is too large, it may not be possible
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Figure 9. The blade pro- Figure 10. The reversed type
file and velocity distri- blade profile and velocity distri-
bution of the mean strepm button of the mean stream line
line which is a circle ,0,->oj which is an equi-z-directional

and a suspended clhain curve angular variation curve.
Key: 1. W m/sec, 2. -. < -- KeY: 5. center line of the inner
center line of the inner contact circle in the duct, 6.
contact circle in the mean stream line, 7. M r/sec.
duct, 3. mean stream line.

to use only the first three terms of the Taylor series in the

mean stream line method. This can be realized by noticing a

rapid change of P11', in the y direction (usually the fact that

it becomes smaller near the inner arc shows up first) when

calculating equations (33) and (34). Therefore, in the present

use of the mean stream line method to design planar turbine

cascades, it is more appropriate to choose a cascade density

greater than 1.4

As discussed above', the solutions of the blade profiles

of the subsonic compressible flow and incompressible flow are
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vcry closec. J ith thL same mQean stream linc, basically it only

shifts the blade profile towards the direction of the inner

arc. (Strictly speakin7 it is impossible to compare between

the two cases. This is because that the velocity distribution

on the mean stream line cannot be the same for the compressible

and incompressible cases when the mean stream lines are the

same. Similarly, at Wi the compressible We is larger, there-

fore, the velocity distribution values of the blade profile

obtained are also larger). In addition, because of the varia-

tion in density, when the W of the front (or rear) fringe ism
greater or equal to that of W, or We, the increase of PIC, for

the compressible case is smaller which means that the front (or

rear) fringe can be made thinner. However, this effect is not

significant. Besides these, we can imagine that: in the sub-

sonic region, it may be more accurate to use the mean stream

line method when the M number is larger. This is because that

the trends of variation of W and p are opposite where usingz 1

Taylor series expansion on both sides. Thus it makes it poss-

ible that the series of PW, may converge more rapidly.

IV. The Design Method Which Satisfies a

Given Blade Thickness Distribution

The next advantage of the mean stream line method is that

it allows the design of a blade profile which approximately

satisfies a preset thickness distribution in order to ensure

the strength, rigidity and cooling requirements of the blades

When using the analytical method to carry out the cal

culation, there are two design methods to assure the thick-

ness distribution as discussed in the following.

In one of the two methods, the design variables are

still Y.=y(z) and I'=i(:) as discussed before. In order

to assure the distribution of thickness at this time, we
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Figure 11. The reversed Figure 12. The reversed type
type blade profile and blade profile and velocity
velocity distribution when distribution when the mean stream
the mean stream line is an line is an equi-z-directional
equi-z-directional angular angular variation curve.
variation curve. Key: 5. W m/sec, 6. 60°/stream
Key: 1. W m/sec, 2. center line.
line of the inner contact
circle in the duct, 3. mean
stream line

should follow the instructions in Reference [1] to

initially assume that (PI,)' -8 to determine the approximate

variational curve (P.) -z After the shape of the mean

stream line Y,,--(z) is selected, the variation curve U',-z

can be obtained from the first order isoentropic aerodynamic

equation. That means we can use an analytical expression

Wm=,W(z) which is very similar to this curve to replace it

to solve the problem. Since the relation between (Pl'.). and

t/'-& is already very similar and the thickness distribution

of the blade in actual design work only has to satisfy the
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Figure 13. The reversed type blade profile and velocity
distribution of the mean stream line which is a suspended
chain curve.
Key: 8. W m/sec, 9. 60% stream line.

requirements approximately, therefore it does not have to be

too rigorous to transform (pw:& :z into 'm-z and finally onto

Wv=W(=) in order to avoid mathematical difficulties and

increase the computational speed.

The other method also used the selection of (PW,)mWC)

and y,-=y(z) as in Reference [l] to be the variables in order

to obtain a series of equations from which the analytical solu-

tion can be found. Their forms are very similar to the ones

given in Section III of this paper. Since in the actual design

it does not require the strict assurance of the thickness

distribution, we can use the approximately corresponding

W,.=I,(z)to replace (P1,)--(z) as the variable. The actual

equations are omitted here to save space. It has been docu-

mented in detail in Reference [8].
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VII. Solving the Forward Problem

Using the Analytical Method

It Is ::oro complicated to 3olvu the for.;ard ,roblem usirng

the analytical method because it is necessary to find the

analytical expressions J='(z) and Ym=Y(z) which satisfy

the boundary of the blade profile at this time. However, it

still has some advantages over the numerical differentiation

method used in the past. Since it is unavoidable to carry out

a few trial runs to approach the boundary of the blade profile

in solving the forward problemtl], ] it is of course more

convenient and fast to perform these trial runs using the

analytical method. From this we can first obtain the mean

stream line and the trend of variation of parameters on it.

We then can use the numerical solution to make the final

correction. Thus the entire approaching processes can be com-

pleted faster and more accurately. Actually for those who are

already familiar with the analytical method, it is more

desirable to use the analytical method to carry out the entire

approaching process. Based on the experience acquired to date,

it is not going to be slower than using the numerical method.

Since it avoids numerical differentiations, the accuracy is

even higher.

Because that the accuracy in using the analytical method

to solve the reverse problem is higher and there are lots of

calculated blade profiles available to be referred to,

therefore we have verified these blade profiles in order to

examine the validity of the empirical variational rules of

Y- and 011'.), as presented in References [1] and [3].

The result of verification is satisfactory. We can only

supplement as follows: the position of the mean stream line

for an incompressible flow is even more toward the inner arc

than the one obtained using the plotting method in Reference

[3] (the physical meaning of this point is obvious). We

suggest that the envelop curve n'b in Figure 5 of Reference

L ~. .-



r3] be used dirertly as the mrian strore.m lne*. Tn nddition,

under many conditions there are similarit!ies botween the

(PII)'-- curve and thn sc'/D- rurv.- (specific situatlons

are show,;n in Reference [8]). Therefore, in solving the forward

problce:m using the analytical method, it is possible to use

these recommended analytical expressions which are determined

to have approximately the same variations as ym and (Pil,)-

or (P1) to obtain the preliminary solution. When the obtained

duct boundary is not consistent with the given condition, we

can carry out a correction as presented in References [] and

[3]. and then list the analytical expressions after the correc-

tion. If one is familiar with the characteristics of various

curves, it is not a difficult step either. As discussed above,

in the selection of the analytical expressions of wm and

(Pi,)_" or W*, it is possible to connect them with several

curves which is more convenient in finding the solution to the

forward problem. If it is difficult to make W1'.. 11"., ij' and

Y..', " p continuous at the junction, it is also possible

to separate the defined region by assuming that another segment

of a smooth curve is connecting them.

VIII. Accuracy of the Analytical Method

The mean stream line method has already been verified

experimentally. This paper merely presents an improvement in

the specific calculation procedure. It does not alter its

conditions and simplification assumptions. Therefore, it Is

not necessary to conduct another experimental verification.

However, for the further verification of the reliability, the

speed of solving the forward problem, and the applicability to

the compressor cascades, we have carried out the forward

* Comrade Wei Yu Ping who is a graduate student of Tsing Hua
University Internal Combustion Machinery Group has partici-
pated in this verification work.



problem calculation using the analytical method on the two

cascades with cxp rim:ental data shown in Refer-,noes [4] and

[6]. The comparison of calculated and experimental results

are shown in Fiures 14 and 15. The fori;ier corresponds to a

cascade with the second series of original black profile in

Reference [14] with P.=60* , attack angle (angle between WI

and the line of the arc) is 750, the center line deflection

angle of the blade profile is 1200, and the density is 1.8.

The latter is the Model 3 pulsed compressor planar cascade

in Reference [6]. The purpose of this calculation is to

explore the feasibility of using the mean stream method on

an axial flow compressor planar cascade. References [4] and

[6] only gave the experimental data of the above two cascades

at low velocities. Therefore, in our calculation we assumed

that the working medium is an incompressible fluid.

From Figures 14 and 15, it can be found that the calculated

results are in satisfactory agreement with the experimental

data (the results of turbine cascades are even better. For

compressor cascade, although the absolute values of the velo-

city distribution are slightly different, yet more importantly

the trend of velocity distribution variation is completely

consistent). It completely satisfies the requirement of

engineering calculation. In addition, in the calculation we

have verified that the use of the analytical method to solve

the forward problem is effective and fast. For both types of

cascades, it only requires about five trial runs to fit all

the coordinates of the calculation points on the surface of

the blade profile. Since it only requires very small amount of

time to complete one run, therefore the total required time

is not too much.

In the example presented in Section V for the reverse

problem, when the mean stream line is a circle and its velocity

distribution is a constant, the flow inside the duct is a free
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Figure 14. Comparison of Figure 15. Comparison of Computa-
Computational Example of tional Example of the Forward

the Forward Problem with Problem with Experimental Data.
Experimental Data. Key: 4. calculated value,
Key: 1. calculated 5. experimental value.
value, 2. experimental
value.

Whirlpool. The solution at this time can be obtained rigor-

ously: The boundary of the duct and the mean stream line are

concentric circles and the velocity distributions on them are

also constants. Their specific numerical values can also be
easily obtained. Comparing the results of the rigorous

solution and those obtained using the method mentioned in ths

paper, we can see that they are completely consistent. There

is only very small difference in a small segment of the front

and rear fringes and those areas are not supposed to be

accurately determined by the mean stream lne method. This

also demonstrated the accuracy of this method.
pape, w ca seetha thy ae copleelyconsstet. her

is oly ery mal diferece n asmal semen of he ron

an erfigsadtoeaesaentspoe ob



Finally, it should be pointed out that: the above

calcul.tIons in the nxanples althou h .,ere carried out uslng

ordinary slide rules yet the coordinate points on the surface

of the blade prcfile are very smooth (when slight unzmoothness

is found in a certain location, it can even be used as in

indication that there is problem in calculation at this point

and requires an examination). From this the advantage of the

analytical method is fully demonstrated (There is soie slight

scatter of the coordinates obtained using the numerical

solution. Refer to Reference [3]).

IX. Conclusions and Projections

This paper presented an improvement procedure for the

mean stream line method - using the analytical solution. This

improvement can significantly simplify and speed up the calcula-

tion process. It does not require the multiple usage of numeri-

cal differentiations. Slide rules can be used in the calcula-

tion. The work load required to correct a mistaken term is

also very small. It also simultaneously raise the accuracy

drastically. In addition, we can control the design variables

to calculate good blade profiles. Therefore, this method

should be recommended in the design and calculation of turbine

cascades of usual densities and pulsed compressor cascades of

high densities.

Other than that, the analytical solution itself still has

a lot of room for further development which is yet to be

explored. For example, using its high calculation speed

characteristic, we can obtain a series of cascades for compari-

son to provide detailed information on the selection of para-

meters in the design of cascades or to even directly obtain a

family of cascades to be selected for use. Because the analy-

tical solution is used, it also opened the possibility of

using direct analytical method (even in approximations) to

I--



determine the optimal design parameters. When It is necessary,

the analytical solution also allows the conditions that higher

terms of the Taylor series expansion with respect to the y-

direction must be used. This is because that first higher

order derivatives can be more prcisely determined (it is not

easy to obtain accurate values using numerical differentia-

tions) and secondly the use of more terms of the Taylor series

will not be complicated by too much as compared to the use of

the numerical solution. Thus further expansion of the Taylor

series in the y-direction can be used. Then it is possible to

design general compressor cascades and to select the inner

(outer) arc of the turbine cascades to calculate the outer

(inner) arc using the mean stream line method. Especially, it

is highly probably to design axial compressor cascades with

higher density near the inner rdius using this method. Figure

15 is a preliminary example of such a case. Although the den-

sity of a conventional cascade is much less dense, yet its

curvature is also much smaller. This corresponds to the use

of a small segment in the z direction of the blade profile as

the expansion region for the calculation. Therefore, it seems

that it is even possible to use only the first three terms of

the Taylor series to calculate compressor cascades. The

capability of designing one blade surface from the surface of

one blade profile of the turbine cascade also provides advan-

tageous conditions to assure its technological and aerodynamic

properties. In addition, it is also worth considering as to

how the problems on the arbitrary revolving surfaces and binary

ducts (such as the axi-symmetrical gas inlet tube and the com-

pressor tube of turbine cascades) can be solved using the

results of the analytical solution. For all these, we wish

that development will be gradually make in the future.

Under the guidance of the authors and Comrade Chiang

Shih Yen, students of the 1963 class of Tsing Hua University



gas combustion machinery group, Liu Chin Yu, Shu Weu Tao,

Show Shau Hau, Wang Chan, Kuo Kao Tsian and Chen Chun Hua

have explored part of the problems discussed in this paper

in their graduation designs to various extents. Professor

Wu Chun Hua has reviewed this paper in detail and often

offered valuable suggestions on the developmental direction

and problens in this work. Comrade Zhang Chu Chow has

plotted all the figures on this paper. We wish to express

thanks to all of them.
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APPENDIX

The following two tables are presented in the appendix:

1. Table 2. Table of Special Equations when Frequently Used
Geometrical Curves are Chosen to be the Mean Stream Line.

2. Table 3: Table of Functions and Equations of Functions
Used in the Calculation.
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Table 2. Table of Special Equations When Frequently 
Used

Curves are aTed s the Mean Stream Line.

1 2

3
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Key: 2. Colume 3. Now; 4. Geometric Curve, 5. Analyticaly

relation, 6. Circular arc, 7. Second Order Parabolic Curve.
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Table 2 Cont'd.
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Table 2 Coftrd.
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Table 2 Cont'd.

2 Ic yLoh (OZ) +

5 0ku00sit, OC - 2C'_ (X 0( y 1j)]

6 P102( Y -I) IV+lJ
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8 1flit V~ It ~ ) ' + ?i'

10 (a ) - )I+.f"

1 1 + 4 I 'V : j %f 4 2 - Y 1 3( V I ) 2 P ,IV + ( 7 - S Y ) O ( Y

Keyz 1. Continuation; 2. Column,3 Row,4 Suspended Chain
Curve, 5.Cosine Curve.
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-Okx 0 sin 0 C I + 2 cwz3( Y - )21
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Table 3. Table of 7u? cti onz Uc~J in thi Calculation

21 It3
0~cz sin 2 2 o' i

IGP2-sA 1)i~Sn 2cscAsn CA ( 2O5 01
_______ -1cs0+1) 1  (4e- o)- 8ca" 3

: 0 -1.CGOG 0.000 .0000 0.0000 2.0C00 0.0000 O.OcO0

5 0.9962 0.08716 0.9811 0.1730 1.8947 0.2569 0.8544

1C 0.9848 0.1736 0.9254 0.3368 1.5943 0.4849 1:6029

15 0.9659 0.^588 0.6365 0.4830 1.1427 0.6597 2.1560

20' 0.9397 0.3420 0.7198 0.6040 0.6047 0.7647 2.4549

25' 0.9063 0.4226 0.5826 0.6943 0.05521 0.7934 2.4794

30" 0.8560 0.500C 0.4330 0.7500 -0.4330 0.7500 2.2500

25* 0.8192 0.5736 0.2802 0.7698 -0.8012 0.6481 1.8228

40' 0.7660 0.6428 0.1330 0.7544 -1.0133 0.5082 1.2784

45* 0.7071 0.7071 0.0000 0.7071 -1.0607 0.3536 0.7071

S0 0.6428 0.7660 -0.1116 0.6330 -0.9618 0.2066 0.1933

$5* 0.5736 0.8192 -0.1962 0.5390 -0.7572 0.08515 -0.1984

0' 0.500C 0.8660 -0.2500 0.4330 -0.5000 0.0000 -0.4330

5' 0.4226 0.9063 -0.2717 0.3237 -0.2459 -0.04623 -0.5087

70' 0.3420 0.9397 -0.2620 0.2198 -0.04192 -0,05849 -0.4538

75" 0.2588 0.9659 -0.2241 0.1294 0.08204 -0.04737 -0.3189

60* 0.1736 0.98,8 -0.1632 0.05939 0.1179 -0.02611 - 0.1638

Key: 2. Function, 3. Equation, 4. Functional Characteristics,

5. Even, 6. Odd.
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CA X Cos 0sir O.

...4n 3 sin___ (Gcos 20 1 -_2 cos2 0

-1.0000 1.0000 2.0000 0.0000 0.0000 -1.0000 1.0000

-0.9586 0.9924 0.08632 1.9471 0.08617 0.4302 -0.9773 0.9849

-0.8399 0.9698 0.1710 1.7935 0.1659 0.8241 -0.9114 0.9406

-0.6597 0.9330 0.2500 1.5535 0.2333 1.1495 -0.80s0 0.8705

-0.4415 0.8130 0.3214 1.2496 0.2838 1.3814 -0.6764 0.7797

-0.2126 0.8214 0.3830 0.9093 0.3146 1.5046 -0.5280 0.6747

0.0000 0.7500 0.4330 0.5625 0.3248 1.5155 -0.3750 0.5625

0.1728 0.6710 0.4698 0.2382 0.3137 1.4218 -0.2295 0.4503

0.2934 0.5868 0.4924 -0.03966 0.2890 1.2413 -0.1019 0.3444

0.3536 0.5000 0.5000 -0.2500 0.2500 1.0000 0.000 0.2500

0.3S78 0.4132 0.4924 -0.3860 0.2035 0.7283 0.07175 0.1707

0.3178 0.3290 0.4698 -0.4458 0.1546 0.4576 0.1125 0.1082

0.2500 0.2500 0.4330 -0.4375 0.1083 0.21A5 0.1250 2.06250

0.1725 0.1786 0.3830 -0.3763 0.06841 0.02744 0.1148 0.03190

0.1013 0.1170 0.3214 -0.2825 0.03757 -0.09582 0.08961 0.0168

0.04737 0.06699 0.2500 -0.1785 0.01675 -0.1495 0.05801 0.004887

0.01508 0.03015 0.1710 -0.08591 0.005157 -0.1401 0.02834 0 0AC9092

Key: 1, 2,4,7,8. Even, 3,5,6. Odd.



C-3 C34 0 in 0 1  1 1 COSS

(,-11os -I 0 -s3 (cos" 1 , 1

=0' 1.0000 -5.0000 0.0030 0.0000 2.0000 1.0000 1.0000

51 0.9836 -4.8605 0.08584 -1.7128 1.9397 0.9135 0.9811

10" 0.9551 -4.4588 0.1633 -3.2362 1.7662 0.6671 0.9263

15 0.9012 -3.8420 0.2253 -4.4091 1.5C06 0.2975 0.8409

20' 0.8298 -3.012 0.2667 -5.1217 1.1742 -0.1407 0.7327

25" 0.7444 -2.2596 0.2851 -5.3307 0.8241 -0.5852 0.6115

30* 0.6495 -1.4614 0.2813 -5.0625 0.4871 -0.9743 0.4871

35' 0.5470 -0.7555 0.2583 -4.4054 0.1942 -1.2526 0.3670

401 0.4495 -0.2046 0.2214 -3.4919 -0.02962 -1.4078 0.2638

45" 0.3536 0.1768 0.1768 -2.4749 -0.176R -1.4142 0.1768

50 0.2656 0.3864 0.1308 -1.5011 -0.2481 -1.2929 0.1097

55" 0.1887 0.4493 0.08866 -0.6882 -0.2557 -1.0775 0.06208

60" 0.1250 0.4063 0.05413 -0.1083 -0.2188 -0.8125 0.03125

85" 0.07548 0.3046 0.02891 0.2195 -0.1590 -0.5445 0.01348

70" 0.04001 0.1886 0.01286 0.3252 -0.09663 -0.3133 0.004680

75* 0.01734 0.09125 0.001334 0.2735 -0.04621 -0.1444 0.001161

Sol 0.005236 0.02968 0.0008951 0.1549 -0.0149? -0.04555 0.00015791

Key: 5. Even, 6. Odd.
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CC, C, C, Cs Co C,

Co3 ,W x AOioXsinl0 x COS Ax COS in x

l-27oo&2 3c4Ci5- $Cs 0)!(1-6C06 2 p D -Cos0{(26COSV-6)

-1.0000 -1. OCOO 2.0000 0.0000 2.0000 0.0000 -5.0000 0.0000

-0.9361 -0.9848 1.9319 -0.8577 1.9772 -0.4318 -4.9204 1.7193

-0.7535 -0.9397 1.7321 -1.6276 1.9095 -0.8368 -4.6865 3.2861

-0.4786 -0.8660 1.4142 -2.2321 1.7990 -1.1901 -4.3120 4.5646

-0.1503 -0.760 1.0C00 -2.6124 1.6491 -1.4700 -3.8191 5.4504

0.1863 -0.6428 0.5176 -2.7357 1.4642 -11.6602 -3.2366 5.8818

0.4871 -0.5000 0.0000 - .25981 1.2500 -1.7500 -2.5981 5.8457

0.7127 -0.3420 -0.5176 -2.2:33 1.0130 -1.7357 -1.9398 5.3780

0.806 -0.1736 -1.0000 -1.6688 0.7605 - 1.6204 -1.2981 4.5384

0.8839 0.0c 1414 -1.0000 0.5000 -1.4142 -0.7071 3.50C0

0.8254 0.1736 -1.7321 -0.3008 0.2393 -1.1330 -0.1963 2.3353

0.6976 0.3420 -1.9319 0.3459 -0.01303 -0.7978 0.2111 1.1999

0.5313 0.5000 -2.0000 0.8660 - 0.2;)I - 0.4330 0.3000 0.2165

0.3!85 0.6128 -1.9319 1.2036 - 0.4612 j -0.06492 0.6640 - 9.5195

0.2073 0.7660 -1.7321 1.3268 -0.6191 0.2802 0.7060 -0.9509

0.09590 .8660 -1.4142 1.2321 -0.7990 0.5777 0.6378 -1.0646

0.03031 0.9397 -1.0000 0.9136 -0.9095 0 8066 0.4791 - 0.8920

Key: 5. Even, 6. Odd.
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i PA p4 Ps P, Ps pf

2ns I Cfxifo~1 coSi~ St 2 c054 0sin~ I'8sin$
Cost __ __ I ______ +I 3_acot___0ar tt 1 'A

=0. 1.0000 2.0000 0.0000 2.0000 0.0000 0.0000

S. 0.9736 1.8218 0.8479 1.8880 0.4269 0.08551

10' 0.8975 1.3388 1.5545 1.5772 0.7993 0.1609

15" 0.7805 0.6870 2.0116 1.1347 1.0725 0.2176

20" 0.63S6 0.03745 2.1677 0.6522 1.2198 0.2506

25" 0.4785 -0.620 2.0365 0.2400 1.2359 0.2584

30" 0.3248 -0.7307 1.6875 -0.1055 1.1367 0.2436

35" 0.1871 -0.7657 1.2231 - 0.2903 0.9234 0.2105

40* 0.07806 -0.6426 0.7502 -0.3473 0.7284 0.1606

45 0.0000 -0.4419 0.3536 -0.3125 0.5000 0.1250

50* -0.04412 -0.2483 0.0798S -0.2315 0.3309 0.08106

55" -0.06454 -0.1083 -0.06527 -0.1438 0,1505 0.05085

go' -0.06250 -0.03125 -0.1083 -0.07422 0.05413 0.02706

65 -0.04852 -0.001520 -0.09085 -0.03072 0.001901 0.01222

70' -0.03065 0.003824 -0.05309 - 0.009520 -0.01120 0.004398

75* -0.01502 0.0019S -0.02134 -0.001123 -0.01002 0.001211

60" -0.00920 0.0003766 -0.0c19 1 - 0.000184S - 0.004224 0,000155

Key: 1. Function, 2. Equation, 3. Functional Characteristics,
4. Even, 5. Odd.



COSTX Cost~5n~ cssi 6
4 

-in a (40c-4 6 co3ss inl x

(12-17Co. 2
i) (6-2:(A? -3gcosl A+ S (3-102- 2)

-5.0000 0.0000 1.0000 0.0000 0.0000 0.0000

-4.7426 -. 6928 0.9663 0.08519 4.5737 0.5014

-4.0314 -3.1386 0.8713 0.1584 0.9424 0.8778

-3.0292 -4.1137 0.7320 0.2102 0.9837 1.0434

-1.9484 -4.5226 0.5713 0.2355 0.7025 0.9759

-0.9863 -4.3786 0.4126 0.2342 0.2209 0.7197

-0.2740 -3.7969 0.2740 0.2109 -0.2813 0.3634

0.1460 -2.9561 0.1653 0.1733 -0.6426 0.01646

0.3133 -2.0491 0.09084 0.1299 -0.7802 -0.2437

0.3094 -1.2374 0.04419 0.08839 -0.7071 -0.3750

0.2256 -0.6202 0.01873 0.05103 -0.5064 -3.3836

0.1309 -0.2264 0.006719 0.02917 -0.2813 -0.3091

0.06055 -0.02706 0.001953 0.01353 -0.1083 -0.2030

0.02159 0.03921 0.0003301 0.005164 -0.01477 -0.1073

0.005481 0.03804 0.00006404 0.001504 0.01417 -0.04351

0.0008450 0.01846 0.000005212 0.0002904 0.01142 -0.01211

0.0000546 0.004671 0.0000001436! 0.00002700 0.00354 - 0.001762
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Table 3. Table of Functions U sed in thu Calculations (concentration 3)

I 1
function To T, )13

C05 siso x cos si'equation!~~cns ft'a sin ' sn

equation 2 cI w sin2 P 3 cuss AsinlC 21-34c: ) I (dco 2 - 1)

funct nj
odcd t j o dd even even evencharacte-ristics even

0-01 0.0000 0.0000 0.0000 0.0000 0.0000

S. -1.0854 0.08454 0.0230 0.01496 0.02236

10" -1.8969 0.1536 0.08293 0.05673 0.08380

15 -2.2540 0.1961 0.1649 0.1166 0.1690

2.0 -2.128 0.2079 0.2458 0.1824 0.2571

25- -1.6225 0.1904 0.3039 0.2410 0.3276

30" -0.9492 0.1582 0.3248 0.2813 0.3654

35- -0.2237 0.1163 0.3045 0.2963 0.3623

40' 0.1361 0.07623 0.2502 0.2846 0.327Q

45" 0.3536 0.04416 0.1768 0.2500 0.2652

50 0.3756 0.02232 0.1017 0.2004 0.1932

55. 0.2863 0.009596 0.04001 0.1453 0.1250

0o 0.1692 0.003383 0.0000 0.09375 0.07031

65" 0.07708 0.0009223 - 0.01771 0.05241 0.03322

70" 0.02561 0.0001760 -0.01880 0.02417 0.01240

75" 0.005436 0.00001945 - 0.01184 0.008373 0.003251

80 0.0005393 0.0000008142 -0.004466 0.001764 0.0004594

' -- _ _ _...__ _ _ _ _" " ... . _ __- " ' _ __" " . .. .. ..'" "" "- l - "



TilE .\NALYTICAL SOLUTION OF IE:%IN-STrREA M LINE

METHOD FOR TVO-D1IM.NSLONAL CASCADES

-SOME DLE'LOPMIINT OF 'MEAN-

STREAM LINE METIIOD(I)-

Tsay Ruey-shen

ABSTRACT

A modification of ise.n-stream lisie method is presented. Vith this modification, an

computations of two-1hmeosi,-J7ii caszide can be calcul~itcd an:lytically and the accuracy
solution is higher than the oriiinal method as well a the time needed for one c:3mniete

calculation is horcvr. Some e.arnple- of solutmjn are c.iupa'ed and discusied for finding

the better f,-ni of the mean-stream liae and the better variation of velocity alone the
mean-stream line. With this discussion and the .quations and tables presented in this

paper, only abut 8 nours are nee'lel fir projecting a good' turbine cascade circulated

by compressible flaw, and the iterat.ina in the direct problem to fit the given b!ade

shape is more practical. 'Ihe results of calculaton of this method compared well with

experimental data. Some probabilities of development of th mean-stream line method

are discussed in the end of this paper.
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CALCULATION OF TRANSONIC FLOW IN PLANAR CASCADES -

SOME DEVELOPMENT OF MEAN STREAM LINE METH1OD (IV)

Tsay Ruey-shen

Abstract

Because the equations of the mean
stream line method are consistent at sub-
sonic and supersonic speed and there does
not exist an odd point at r1=1, therefore
they can be used to calculate transonic
flow in the cascades. Comparing the cal-
culated results with the experimental data,
we found that it is feasible to use this
method. The approximate range of condi-
tions under which this method is applicable
is also analysed in this paper.

Symbols

a sonic speed

B function of J31

1 coordinate in the direction of the stream line

M Mach number of the gas flow

n direction normal to that of the stream line

An distance of expansion in the n direction

q W relative flow density of the gas flow

W velocity of the gas flow

y coordinate tangent to the direction of the cascade

Ay distance of expansion in the y direction

z axial coordinate of the turbine machinery

B arc tg (i) , gas flow angle

' ratio of specific heats of gases

W/a, relative velocity of the gas flow

P density of the gas

4 flow function

Alp amount of flow within the distance of expansion
40



radius of curvature of the stream line

Superscript

d/dz, total differentiation with respect to the z
direction

Subscript

i component in the 1 direction

m value on the mean stream line (selected)

p value on the inner arc of the blade profile

s value on the back arc of the blade -profile

z component in the z direction

1 value under one-dimensional assumption

1.2---n different functions

critical values of the gas flow

I. Introduction

In recent years transonic cascades have been widely used

in turbine machinery, it is there imperative to obtain better

understanding about the state of flow in those cascades. It

is well known that even under the simplified condition of an

ideal gas flow in a planar cascade, there is a certain degree

of mathematical difficulty in solving for the transonic flow.

This is because that the basic differential equations des-

cribing the flow in the subsonic and supersonic regions are

different types. One is the elliptical type while the other

is the hyperbolic type. It is not convenient to treat them

in an unified manner.

But the above problem only appears in multi-dimensional

equations. In one-dimensional flow, the subsonic and super-

sonic flows are both represented by an integrated algebraic

equation with the exception that we must notice that the M

*Izzi~ zzz z~~~. .- -~ /
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number is a dcuble value function of the flow density. There-

fore, we can assume the following: The difficulty in solving

the transonic flow problem is because the multi-dimensional

flow equation is used directly. If we can initiate the general

potential flow theory l l of turbine machinery to continuously

decrease the dimensions all the way to one then we can use

the simple method to directly obtain the solution of transonic

flow. The mean stream line method [2] is suc a method in

nature. It transforms the two-dimensional flow into a flow

on the one dimensional flow on the mean stream line y -ym(Z)

and the expansion of a flow parameter in another direction

(usually in the tangential direction y of the turbomachine.

Thus it may be possible to solve the transonic flow problem

using an unified mathematical treatment. Especially if the

analytical solution method is used instead of the numerical

method, it is much more easier to verify this possibility and

more suitable for the kind of calculation accuracy required

in the transonic region.

Based on the above consideration, this paper presents a dis-

cussion of solving the transonic flow in planar cascades using

the mean stream line method. Detailed introduction of this

method has already been documented in References [2] and [3],

so it is not repeated here.

II. Equations of Mean Stream Line Method

Applicable to Transonic Flow

Reference [3] has derived the equations of the mean

stream line method which are suitable for the analytical solu-

tion. But in order to be applicable to high speed flow, it

is better to alter the forms slightly. In addition, in order

to define the boundary of the flow, we still must solve a

third order algebraic equation. Finally, we can use the flow



function concept to derive a form which is even easier to

solve (see Appendix A). It is summarized in the following:

The partial derivative expanded in the direction tangent

to the mean stream line:

t

The equation which determines the flow boundary is

(notice that A has plus and minus signs): :

is The equation which determines the velocity 
distribution

In the practical calculation, usually the remaining small

terms in equations (5) and (6) are neglected. The B nts in

equations (1) - (4) are simple functions of $ and their defi-

nitions and numerical values can be found in Reference [3] or
in Appendix B Furthermore, Sm a m can be obtained from

W (z) as:

L . .



III. The Feasibility of Solving Transonic Flow

Without Intense Shock W-ave Using the ,!-ean

Stream Line Iethod

As discussed above, the mean stream line method reduces

a two dimensional planar problem to a one dimensional flow on

the mean stream line and the expansion of a flow parameter in

another direction. There is not difficulty and doubt in cal-

culating the one dimensional transonic flow. Therefore, the

only thing- which we must check in solving for the transonic

flow is that whether it is feasible to expand into a Taylor

series in another direction which intersects the stream line.

Apparently, if at places where there is obvious jumping

variations in the flow parameters it is impossible to obtain

the solution using the Taylor series expansion. Therefore,

the mean stream line method cannot be used in regions with

strong shock waves. Besides this point, because the same type

of basic equations are used in both the subsonic and supersonic

regions in the derivation of these partial differential equa-

tions used in the expansion, the equations obtained have no

odd point at M = 1, as long as the flow field varies relatively

uniformly and smoothly, it is as effective for subsonic flow

as for supersonic flow when using the series expansion method

to determine the corresponding flow. Since it is possible to

use the mean stream line method for the form, the same method

should also be applicable to the latter. For good cascades

the flow Inside basically varies relatively uniformly and

smoothly which coincides with the above requirement. The

exceptions are areas near the front and rear stationary points

where the mean stream line method cannot be used to obtain

accurate solutions.



In addition, we may consider the following: The potential

flow is a reversible flow and the boundary condition of planar

cascades is usually that homogeneous flow exists at infinite

distance both upstream and downstream. Therefore, when it is

reduced to a one-dimensional problem, the relation between

each flow parameters in the direction of the expansion is also

a one-dimensional flow relation (passing through one stream

line to infinity and then flowing back on another stream line).

There is no difficulty involved such as the ones encountered

in the treatment of multi-dimensional transonic problems. The

only thing is that the flow variables (there is only one var-

iable in the one dimensional isoentropic flow) are not defined

through the use of variations of parameters in the direction of

the mean stream line.

In the one-dimensional flow, the only difference between

the supersonic flow and the subsonic flow is that the flow

density of the former is a decreasing function of M number and

latter is an increasing function. When M = 1, q = 1 reaches

the maximum. Therefore, in the expansion to obtain the solu-

tion, it is only natural to consider that these relations

should be checked to see whether they are satisfied. In prac-

tice, when M = 1, we should get j§'c- and <_ :0 When

M< 1, . should have the same sign as _.; When M > 1,

they should have opposite signs. Using equations (A - 10) -

(A - 12) in Appendix, we can see that these relations are all

satisfied.

There was a successful example [4] using b :ies expansion

in a direction which intersects the stream line to solve for

the transonic straight axial nozzle which indicates that the

above idea is feasible.

Of course, there is another problem. In the classical

-----------------------------------



subsonic mean stream line method it is only necessary to use

up to second order partial derivative of velocity in the Taylor

series expansion. Is it enough to use up to the second order

term in the transonic region? In other words, when only up to

the second order derivatives are used, how far can the expan-

sion distance be? Can this be applicable to general transonic

cascades? This problem will be examined through the actual

calculation and qualitative analysis presented in the next

section.

IV. Expansion Terms and Effective

Expansion Distance

The mean stream line method is a simple method which

enables us to obtain results in short period of time using

slide rules. Therefore, although in principle the more terms

we use the more accurate it is, yet in the actual applicaticn

in subsonic cascades we only used up to the second order par-

tial derivatives of velocity. Of course, we wish that we can do

the same thing for the transonic flow. The calculated results

indicate that it is possible for ordinary cascades. The examples

of the calculation process are shown in Figures 1 and 2.

Figure 1 is the NACA turbine cascade whose experiment results

are obtained from Figure 42(b) in Reference [5]. In Reference

[6], it has carried out a calculation for this cascade using

a time related method. The results are also plotted here.

From this figure, it can be found that the hand calculation

obtained using the mean stream line method is satisfactory.

It seems to be even better than the results obtained using the

time related method by an electronic computer for this speci-

fic example. Figure 2 shows the calculated result for the

TP-lA turbine cascade of M' which is also satisfactory.

But trial calculation indicates that, when the Mm number

In actual working condition is larger and A' is also larger,m
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It is not '-oC'rl to u *' .4 r i-1rv-ttvOs

of velocity. Or, in ot'r ;>':, !.:t lt. its effec-

tive exr.-ion ditt:.nc io T~~'* . .his pheno-

menon can be exPlained ty oJ. t.'~ t' t trOXI line

methcd ar. hezrnineii. ~ ~ (-2 (A-15)

in the Appendix), in the 1o::K,:t.~A velocity.
Because this method is th .rl:Mico: a ;:-lesna

flow to a one-dimensional f'low in the direction of the mean

stream line plus the correction in another direction (which is

reflected by the partial dorivative of the velocity in that

direction). Therefore, the more the flow approaches a one-

M '.4.

0/

Figure 1. The cascade pattern and its experimental and
calculated results. Key: 1. relative width of the cascade,
2. experimental data, 3. mean stream line method, 4. time
related method.

dimensional flow or the smaller the value of the partial

dbrivative (the less correction required), the more accurate it

is; which also means the farther the allowable expansion dis-
tance is. Of course, when the flow curvature .L with



respect to the width of the flow boundary (correspondinr to

the width of expansion) and the expansion and contraction of

the flow boundary (corresponding to are smaller, the

0.50 : . .___ __

\ 

I

• , Q 0 2 0 7 .-1

Figure 2. Cascade pattern and its experimental and
calculated results. Key: 6. relative width of the cascade,
7. experimental data, 8. mean stream line method.

more close to one-dimensional the flow becomes. Therefore,

the application of the mean stream line method should be

limited to the situation that ,,,( (or ,,, )and

j 1(or ( )cannot be too large. This point
is also shown in the expansion equations (A-12) - (A-15)

because the velocity correction due to the presence of some

partial derivatives consists of terms with and A,, .

%" 4d

(the flow parameter variations of a good cascade is smooth
so that only lower order derivates are considered. From i
the expression of the first order derivative (A-12), it can

j II



found that it is necessary to require that the term

which is affecting the curvature cannot be too large. If we

use this method to obtain the solution of a free whirlpool

with variation of direction but no variation in speed and

compare the result with the rigorous resolution, we realize

that in order to obtain the necessary enginp-rir- accuracy
tA -, 3 Z; D ,-.I e' ( -

usually it is desired to have -  or"----- o3,
(the ordinary good cascades are all within cnis range). There

is another point worthwhile our attention which is that the

limitation in the magnitude of is not related to the

Mm number of the flow (see Equations (A-12) and (A-13)).

Indeed, the velocity distribution of a free whirlpool is not

related to the M number. Therefore, when we use the mean

stream line method to solve the free whirlpool or a flow which

principally involves a change of direction (corresponding

impulsive cascades), Mm has no significant effect on the

accuracy of the calculation which means that there is no added

difficulty in solving for the transonic flow. However, on

the contrary, from equation (A-13) it can be found that the

effect of the acceleration on the mean stream line on the

accuracy of the calculation is closely related to Mm and it is

proportional to . This explains the above phenomenon

that when is large if Mm is also large then the effect

expansion distance is short. Comparing to the limiting number

of for the condition that only turning but no accelera-

tion occurs, if we consider that the same magnitude of limiting

number should be applied to the second order partial derivative

for the condition that only acceleration but no turning occurs,

then approximately we get, .. :,. or

jK Otherwise the calculated sand X will be too
large. Of course, if it turns as well as accelerates, then

both limiting regions will have to be even more narrow



However, it is not a linear additive relationship. Using the

Prandtl-Meyer flow with a known rigorous solution to verify

this point, we found that this rule is still feasible. The

relation between ,, and M is shown in Figure 3 (the
:, =, 1. a d or th

figure shows the condition under which : = 1. and for the

generally used value the variation of this curve is veryII"

small). It can be seen that for the same , the effec-

tive expansion distance when mm - 1.2 is only half of that

for the incompressible case (under the pure acceleration and

no turning condition). Therefore, for supersonic flow, if

the acceleration (deceleration) of the gas flow is severe

then the use of only up to the second order derivatives in the

mean stream line method is not acceptable. But, for an ordi-

nary good cascade (at least for a turbine cascade) the accer-

eration (deceleration) in the transonic section is relatively

slow in order to obtain the good characteristics. Therefore,

it is not hindering the use of the mean stream line method

which only uses up to the second order derivatives in the

calculation. Figure 1 and 2 shown before are such examples.

The above only analyzed the effect of the curvature and

accleration on the mean stream line on the partial derivatives

of velocity. The effect on the partial derivatives of the flow

density is not mentioned. This is because the two are actually

consistent through the equation of the one-dimensional flow.

The latter is more complicated to analyze. Since the one-

dimensional isoentropic flow only has one independent variable,

therefore it is sufficient to analyze the derivatives of

velocity alone. In addition, the above analysis was mainly

carried out using physical diagrams. Mathematically it is

better to determine its error or convergence after the deri-

vation of higher order terms of the series. But it is very

complicated and may not be necessary for an engineering calcula-

tion method such as the mean stream line method.

-ai
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Figure 3. The /;v :J - curve

From the above analysis, we can explain the following

facts:

1. The mean stream line method is more suitable for

impulsive turbine cascade than for the reversed type 9

This is because that the latter, with exception of the possi-

bility of having a larger definitely has a

which is much larger than that of the former. Therefore, it

corresponds to the fact that the latter has one more factor

affecting the inaccuracy of the latter than that of the former.

2. Sometimes (such as the reversed type cascades) the 60%

stream line is used as the stream line selected for expansion

on both sides which is more effective than choosing the mean

stream line This is because the former sometimes is even

closer to the geometric center of the flow boundaries than

the latter which makes the expansion distance Ay on either

side smaller. Therefore, the expansion is even more accurate.



I

1

. n r: . .. +

the flow boundary to • :,p... :,- ry planar

cascale is not accu ., Is

I already too large. "t '. *" *.*. r.vantaCes

of the mean strear I. . . . . c&'nter

1 " stream line which haS .. . :. dttance and

the A' on that line i :. .. " n those on

either side.

'I
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Figure 4. Cascade patl',rn a: !':i experimental and calculated
results. Key: 1. rel'.tjv, (.olr,.11n't,Vt in the arc direction,
2. experimental v;,luc, 3. L&,:.- arc, -i. inner arc, 5. mean
stream line method.

As an example p,,rroay :-':,'nd to test the method,

Figure 4 shows the calculat,. Iesults of a supersonic com-

pressor cascade (actually in thc experiment acceleration



existed within the flow boundaries). The experimental results

are obtained from Reference [10]. Although this cascade has

been operating at Mm =1.6 1 2.1, yet the calculated results

(especially in the front half of the flow boundary) still have

a certain extent of reliability. In the latter half of the

flow boundary M number has reached above 2.0. Therefore,

the As and Ap obtained from the calculation are both on the high

side. From this we can see that the use of the mean stream line

method to calculate ordinary transonic cascades (Ml- 1.3 ---,1.4)

should be feasible.

Therefore, the presently available relatively simple mean

stream line method can be directly extended to the transonic

planar cascades. Since the nature and the equations of this

method are not changed, all its advantages and disadvantages

still remain the same [2], [3 They will not be repeated here.

As for the design experience and technique, it is also not

difficult to extrapolate from the experience acquired in the

subsonic situation as long as the characteristics such as q(M)

has a maximum at M - 1 are noticed. For example in the selec-

tion of the position of the mean stream line in the forward

problem, in the pure supersonic region it should be chosen

closer to the inner arc than the geometric center line which

is opposite to that in the subsonic condition.

In order to further increase the accuracy of this method,

it is possible toadd higher order derivatives as the correction.

But the calculation equation will become much more complicated.

It also may not be able to expand very far. It may not even

be better than the situation that a shorter expansion distance

is first chosen in the selection of the stream line expansion

to obtain a new stream line and then gradually expand towards

the outside to be more effective. However, such a method does

not allow the use of the advantages of the mean stream line

method [3 ]. Another possible way to solve the high M flow

-73



problem is to use the mean stream line method to solve the

transonic region. Aiter reaching the pure supersonic region,

we will change to the uncomplicated supersonic characteristic

line method to go on calculating. The total calculation would

not be too complicated either.

V. Conclusions and Projections

Through qualitative analysis and actual calculation, this

paper proved that the existing mean stream line method

(especially the analytical solution which eliminates the error

in numerical differentiation) can be used to Calculate flow

in an ordinary transonic planar cascade and still maintains the
[2], [3]unique characteristics of this method . For example,

results with sufficient accuracy can be obtained using a slide

rule within a couple of days (in the reverse problem). This

paper also discussed the limitations of this method.

The extension of the method introduced in this paper to

the flow in a cascade on a revolving surface should also be

feasible as indicated by the precedenttll[ [12]

In addition, as for whether there is a more generalized

meaning in the reduction of a multi-dimensional flow problem to

an one-dimensional one followed by the use of the characteris-

tic that the one-dimensional flow equation does not have too

much difficulty in the transonic region to calculate the flow

on a chosen stream line then to expand outward and finally to

obtain the transonic flow solution is yet to be studied.

*Fan Yee-Chien of Nanking Turbine Electric Machinery Factory
and L.S. Dzung of BBC in Switzerland have worked in this area.
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APPENDIX A*

In Appendix A, we briefly introduced the use of flow

function expansion to cbtain flow bcundary and the analytical

solution of the planar flow which is expanded in the normal

direction of the stream line using the mean stream line method.

It also explained that the analytical solution of the mean

stream line method can also be used for compressor planar cas-

cades with higher density.

I. The Use of Flow Function To

Solve for the Flow Boundary

For every z on the boundary of the flow in the cascade,

the flow function has the relation " P If we consider

y as a function of 1 =', then

(A-I)

and

L PN ....... (A -2 )

The partial derivatives of y with respect to in equation

(A-12) can be obtained from equation (A-l) as:

(A-3)

L ~. (A-14)

*This appendix is mainly a combination of the graduation theses
of some of the students (Liu Yen-hau, Yuen Chie-Quin, Lee Foo-
ming, Wu Wen-ching, Yu Tso-chu, etc.) of the class of 59 in the
department of modern mechanics at China Science and Technology
University. Since it has never been published, it is included
here.
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~- - ~(A-5)

Since the original mean stream line method only uses up

to the second order derivatives :- ' to provide sufficient

accuracy, therefore the flow funct-vi, expansion is also used

up to the term. Substituting the above three equations
o .

into (A-2), we then can obtain the equation of the flow boundary

which can be solved directly:

;- (A. :24' ... ... ' .'"" v~ ui. -":"~

(A-6

where Ay1 is the expansion distance when the flow is assumed

to be a pure one-dimensional flow.

(A-7)

Using this method to find the solution for the example

in Reference [3] and comparing the result with that obtained

originally using the third order algebraic equation method,

we realized that the solutions obtained using these two methods

are very close.

II. The Method Used to Expand in the Normal

Direction of the Selected Stream Line

The original mean stream line involves expansion in the

y direction which is convenient in the calculation of planar

cascades. If we establish a new coordinate system (l,n) at

each expansion point (z,y) on the mean stream line where 1 is

the tangential direction of the stream line and n is its nor-

mal direction with the direction defined as pointing from the

center of curvature toward the stream line (See Figure A-1),
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then it Is possible to expand in the new coordinate n direction

for each point. At this time the forms of the partial differ-

ential equations in Reference [3] are still valid with respect
to the new coordinate systems. The only thing is that all the

Bm values should be 0 looking from the new coordinates. In

addition, the superscript ' should be considered as the partial

derivative of 1 rather than z. The two derivatives should

have the following relationships:

-g, - .< ' .... T(A-8)
iz

S ,- - (A-9)

Therefore of all the and (z) are originally known,

then it is possible to calculate all the and - , based

on the above two equations. Subsequently, they can be sub-

stituted into the partial differential equations in the n dir-

ection to find the solution. Actually since the 8m values

are always zero in the new coordinate system, it is easier to

obtain the partial differential equations with respect to the

n direction than getting those in the y direction. It is shown

as the following (where 0 is the radius of curvature of the

selected stream line).

(A-10)

. 2 2- T).,; ,-ii

A-1i
--..
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Figure A-I. l-n Coordi- Figure A-2. ThI ! undary With the

nate system. Return Flow >-as-ing by.

The equation which determines the velcoity distribution

then becomes:

. . . t . ', * ., * .''+ ..... (A-15 )

If the normal airection expansion m!.ethod is used to solve

the planar cascade problem, althouCh the calculation is less

in the determination of partial derivatives, yet, because there

Is another transformation process to turn the flow boundary from

the (1, n) coordinate system back to the original (Z, y)

coordinate system, the total amount of calculation is not going



to be too much less. Furthermore, the normal dirctlon

expansion method makes it most difficult to calculate the

velocity distribution in the most Important inlet and ojtlet

regions on the back arc. Therefore, it may not be suitable

to use a pure normal direction expansion method. However,

for some flow boundaries where the cross sections of the

inlet and outlet are perpendicular to the mean stream line or

where there is a large turn, it is better to use this method.

For example, the boundary where the return flow passes by in a

return flow turbine (See Figure A-2) is such a case. We have

used this method to design the flow boundary of a natural gas

expansion turbine. The preliminary result was satisfactory.

III. The Feasibility of Using the Mean Stream

Line Method to Calculate Axial Flow

Compressor Planar Cascades

Reference [3] pointed out that it is possible to use the

existing mean stream line method to design planar cascades of

the axial flow compressors. In order to verify this view,

we have actually solved a series of forward and reverse prob-

lems of this type of cascades. The forward problem is to

find solutions for cascades with known velocity distributions

such as the NACA 65 series and the NGTE C series cascades.

The range of variation of the cascade density calculated is

1.06 - 1.20. The range of variation in the geometric deflection

angle of the blade profile is 24.61 . 650. The results obtained

from the forward problem are more consistent to those obtained

experimentally. This also means that for axial flow com-

pressor planar cascades with higher density, it is still possible

to find the solution using the existing mean stream line method

and the first three terms of the Taylor series. It breaks the

tradition that such a method was only able to be used in the

calculation of turbine cascades.
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APPENDIX B3

Appendix B gives all the expressions and numerical

tables of the B (iS) funictions in equations (1) -(4) to be

used during the course.
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THEORY OF THREE-DIe.ENSIONAL FLOW IN TRANSONIC TURBINE M.IACHINERY

WITH SHOCK WAVE INTERRUPTIONS

Hsu Tsen-chung

ABSTRACT

In order to be consistent with the three-dimensional spatial

flow in turbine machinery with shock waves, this paper derives
the "four-dimensional" basic equations of the S and S flow sur-
faces through the extension of the flow surface concept to the

unsteady flow condition. They are also applicable to spatial

three-dimensional unsteady flow. Using the theory of the charac-

teristic line for these equations, we can obtain the mutual rela-

tionships between the characteristics. From them, we can deter-

mine the boundary conditions of the steady flow. These basic equa-

tions, boundary conditions and applicable initial conditions can

completely establish the transonic flow problem with shock waves

for both types of the flow surfaces. Thus, based on the procedures

recommended in this paper to obtain the ccinplete solution of the

three-dimensional flow and by choosing the proper difference equa-

tions, the numerical solution can then be obtained.

I. INTRODUCTION

In order to obtain the solution of three-dimensional flow in

subsonic and supersonic turbine machinery, [1] presented the S1 and

S2 relative flow surface theory to establish the basic equations

and boundary conditions on these two types of flow surfaces and

also presented procedures to solve these equations. For over 20

years, this theory has been widely used. This practice indicates

that this two flow surface thoery is not only the calculation method

for three-dimensional flow in the turbine machinery, but also the

theoretical basis of the design method of such machinery. The cal-

culation and iteration processes of the two types of flow surfaces

, :i1-



are not cnly the rroceduros to solve the three-dimensional flow

problem, but also those to design three-dimensional flow turbine

machinery.

Recently, with the development of transonic turbine machin-

ery, there has been a desperate need to calculate three-dimensional

flow with shock wave interruptions. In [2], it was pointed out,

after the establishment of the basic equations of three-dimen-

sional flow and the integral form on the two kinds of flow surfaces

and the derivation of the relations of parameters in front and

behind the shock wave under various conditions, that in order to

solve the three-dimensional flow problem we must calculate a two-

dimensional flow which is consistent with the three-dimensional

flow on each of the two surfaces, and carry out iterations between

the calculations of the two surfaces.

The establishment of this type of two-dimensional flow is a

fixed solution problem. Based on the results in [2], it cannot be

carried out on an assigned flow surface. It must extend the steady

flow surface model presented in [1] to the unsteady flow condition*.

It transforms three-dimensional flow to the two types of flow sur-

surfaces which vary with time. This paper first briefly introduces

this unsteady surface and the geometric relations on it. It also

shows the relation between three-dimensional flow surfaces at

every instance.

It is then followed, in the second ani third sections of this

paper, by the establishment of the basic equations on the two flow

surfaces which are consistent with the three-dimensional flow. They

are applicable in the solution of the unsteady flow and the cal-

culation of steady flow with shock waves.

Comrade Huan- Ray Tsien has pointed out that it is possible to
extend the steady flow surface to the unsteady flow surface.



In the fourth section of this paper, the characteristic rela-

tions on the two types of surfaces are derived on the basis of

characteristic line theory. It presents the boundary conditions

at upstream and downstream boundaries and on the flow surfaces

which are suitable for solving the problem of steady flow with shock

waves. The initial conditions can be given using the usual method.

Thus, this specific solution problem can be completely established.

Finally, in the fifth section of this paper we briefly des-

cribe the procedures used to solve the three-dimensional flow prob-

lem by iteration of calculations between the two types of unsteady

flow surfaces.

II. UNSTEADY FLOW SURFACE AND ITS GEOMETRIC RELATION

The combination of all the stream lines of all the points on

a curve in the flow field which is a stream line forms the spatial

flow surface.

In unsteady flow, the flow surface varies with time. Therefore,

in the four-dimensional space including time, the flow surface can

be expressed as:

Thus

The unit vector in the normal direction NCNr,Nu,N,Nt)

satisfies
-- '' - - - - - -• i

Therefore, on the four-dimensional flow surface:

0



On the other hand, there is a flow surface at any instance

in the space

S ... ) ,.. _ - .... 0 '

Its unit vector i(nr, nu, n ) is a function of time t and it

satisfies

I + S

In the meantime, from the definition of the flow surface, for

every instance we have

q-v7 I---,O
which is

It should be pointed out that the corresponding components of

the three-dimensional and four-dimensional unit normal direction

vectors n and N are not equal, but there are the following rela-

tions:

2- - ff (2)

With the above relations on the unsteady flow surface, we can

transform the basic equations of the non-viscous gas In a relative

coordinate system which is rotating at a constant angular velocity

as shown in [1]:

91
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oL .±~'L I ,i(3)

--.0 w ,._. -, ~.......... _ .....

- -'- : -=- '4 - r -t - { -  o' -

(6)

-- .. - -r £T -T~ "7 '-"- ! ......

r r3

separately to the two types of unsteady flow surface. It should

be pointed out that, as a closed series of equations, the equa-

tion of the state of the gas and other relations should be

included in addition to the above equations.

and
rI.= A& 7- +Z . / . - -  (9)

Because these algebraic equations maintain their forms on

the flow surface, they will not be described further in the follow-

ing sections.

III. BASIC EQUATIONS ON THE UNSTEADY FLOW SURFACE S1

Let us consider the unsteady flow surface formed by the stream

lines passing through a certain circle located upstream of the

cascade.

"-7- _--.... -



Any arbitrary function q on it can be expressed as

By notin- Equation (2), the partial derivatives of q on the

four-dimensional flow surface can be written as

From these relations, Equation ()can be rewritten as

where -

'j,( I .... - -7 - -
Try-_ _, * , t ) '

_ --(10)

By introducing _)

the continuity equation can be expressed as

(12)

Similarly, Equations (I4-(7 can'be respectively expressed as

- --. . . _ ,'

-21 --7j_-.
, i I J ; i , i ; '
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I ' I,

S,' I 

_._t ... _ __ .- '> -- _ _

where

-r o

Equations (13)-(15) can also be expressed using I and S:

-- r -a-,.--,t v:. ' t l

r

=iLiS .T 4j 'a. T .. .

If we are considering a steady flow,% the flow surface does
not vary with time. In the above equations A,- I ; 0
Then these equations can be transformed into the basic equations
of t-e steady flow surface corresponding to Equations (34b), (40),

f-t



(41), (39a), (39b) and (39c) in []. In other words, comparing

to the equations on the steady S1 flow surface, in the eauations

on the unsteady flow surface, be-sides the additional
"+ /V,. .,r

and - --- in the expressions of c and f respectively. In the

energy equation, there is a similar J term.

We found that, different from the basic equation of transonic
flow with shock wave interruptions on the S flow surface used to

date, in Equations (12)-(16) b varies with time and appears in the

._ term. Simultaneously, it shows the effect of unsteady

factors in f and J. These are because of the use of the four-

dimensional steady flow surface model in the derivation of these

equations which are consistent .ith the spatial shock wave.

Considering the process of finding for a complete numerical

solution, it is more accurate to carry out the calculation of the

difference format in the invariance form during the interruption

due to the shock waves. We can transform Equations (12)-(16) into

the following divergent forms (or still called the invariance

forms)

v- --.---- - - r . . --- - -- ... . .

i (tt?)

yrI

'" L >1 --,

-X4) b (H + +~ 4H~ ffj

-----S ...- _ .\ : . _.. -' , .

" "b-n, - J  . oT- )

0. ° " . : .. ., ,, , ,



or

where

H

IV. BASIC EQUATION ON THE UNSTEADY FLOW SURFACE E2

Let us consider the unsteady flow surface formed by stream

lines passing through a radial line located upstream of the cascade.

Any arbitrary function q on it can be expressed as

By taking Equation (2) into consideration, the partial deri-

vatives of q on the four-dimensional flow surface can be trans-

formed as:



From these relations, Equation (3) can be expressed as:

-yt S+-C-- . et , -
where '

by introducing

the continuity equation can be rewritten as:

Similarly, Equations (4)-(7) are as the following respectively;

i +W . w,,w F.a- _' i !-•;
I I

I-T ry" r r -- -

it 1

T9?



where - 1 0. __r-- 7L3' "- cW . _ ... _j

4 r s- z
- 1'...-....o

If we use I and S to express it, then the momentum equation

can be transformed into:

= Fc... -- . . . - -, -:..

__'W"TV Y T; +vr '1 F ,

Similarly to the situation on the S1 flow surface, in the

steady flow the above equations can be transformed into equations

(100), (98), (-99a), (96a), (96b) and (96c) in [], respectively.

The difference between the steady and unsteady S2 flow surfaces is

also the same as the situation for the S1 flow surface.

Equations (30)-(34) can be transformed into the divergent forms:

0 #.O.. ... . - . . . _., ... , - :-- '"_ X j F ) .....

'rr - .-

MA'7) 7 __f__ _

t r. ., " (4

qH
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where o&(HI- 7  f.

It should be pointed out that the basic equations on the two

types of unsteady flow surfaces are applicable in slowing the

unsteady flow as well as the steady flow with shock waves. The

difference in the two specific solution problems is in their

boundary conditions.

V. BOUNDARY CONDITIONS AND INITIAL CONDITIONS

In the two previous sections, we have already established the

hyperbolic partial differential equations on the two types of

unsteady flow surfaces. The following is a presentation of the

corresponding boundary conditions and initial conditions.

In the calculation of the initial value-boundary value problems,

the parameters on the surfaces and at the upstream and downstream

boundaries are related to the parameters of the flow a moment before.

Thus, we should use the characteristic line theory [3] of the hyper-

bolic equations to derive the relative relations between the char-

acteristics in order to determine the boundary conditions [4,5,6,7],

(I) The boundary condition on the S. flow surface

At this time we can obtain the following relations:

_ _ (42)Wi - .. ... ... ,--,)

+1iq
W t4

. .. W
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a . .. " : .. ¢ " :'- : -' L .

where p represents the angle between the outer normal line and the

z axis at a certain point on the boundary, Equations (42) and (43)

are the flow characteristic relations while Equations (44) and (45)

correspond to the wave characteristic relations of gas propagating

at a speed -a and a, respectively.

For the uostream boundary: Let us assume that 3,0; then
only Equation (44) can be used. Therefore, three parameters must

be given. The other parameters can be obtained from Equation (44).

Please notice that because V = v at this time, and the three given

parameters (e.g., po, po and gas flow angle) do not vary with time

and the parameters along the 5 direction are .homogeneous, Equa-

tion (44) can be drastically simplified.

For the downstream boundary: If the exit gas flow is subsonic

at this time, then Equations (42), (43) and (45) are usable rela-

tions. It still needs one more given parameter (such as the re-

verse pressure). Please note that V = 0 at this time and, the

above three equations can also be simplified. If the exit gas flow

is supersonic, then all four relations can be used. We can no

longer provide any given parameter.



Fnr the blade surfncoe: Equations (42), (43) and (45) are

all applicable. The required boundary condition is that the flow

velocity is tangential to the surface.

In addition, there is a periodic condition in the calculation

for the S1 flow surface. Its calculation can be carried out based

on the same method as that for the internal points. Of course,

when the shock wave extends to the outside of the duct, whether

to choose the periodic condition of the suction surface in the

pressure surface requires a specific analysis.

(II) Boundary conditions on the S2 flow surface

The following relations can be obtained at this time:

ar, I5- M y dy-

+ it

- _..- _ -_.-- --. 211 -,(4. '

.,,f_.._. ~,- . -+Z , _ .Y ._ .
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where p' represents the angle between the outer normal direction

of a point on the boundary and the z-axis. Equations (46) and

(47) are the flow characteristic equations, while Equations (48)

and (49) are the wave characteristic relations of the correspond-

ing gas propagating at a speed of -a and a, respectively.

For the upstream boundary: Let us assume . then

only Equation (48) can be used. Therefore, it needs three given

parameters. The other parameter can be obtained from Equation (48).

Please note that because P' = 7T and the three given parameters

(e.g., Po, o and M number) are time independent and all the para-

meters in the r direction are homogeneous, Equation (48) can be

greatly simplified.

For the downstream boundary: If the exit flow is subsonic at

this time, then Equations (46), (47) and (49) are the applicable

relations. It still requires one given parameter (such as the

reverse pressure or Vu r). Please note that at this time p' = 0,

the above three equations can also be greatly simplified. If the

exit gas flow is supersonic, then all four relations can all be

used. It cannot be provided with any given parameters.

For the un and down walls: Equations (46), (47) and (49) are

all applicable. The given boundary condition is that the flow

velocity is in the tangential direction to the wall surface.

(III). Initial conditions

It has already been proven [8] by the theory that the choice

of the initial conditions does not affect the final steady solu-

tion. However, if the selection of the initial conditions is very

improper, it may cause excessive oscillations and damge the stab-

ility of the numerical solution. Therefore, the initial values
should be chosen so that there is no sudden variation for all the

I-



flow parameters. In the meantim-e, the selection of the initial

values also affect the speed reaching a steady solution. Con-

sidering these factors, we can choose the solution of the sub-

sonic flow or the parameter distribution which satisfies the

continuity equation on the geometric center line and appears to

be smooth elsewhere as the initial condition.

VI. THE PROCEDURES OF OBTAINING THE COMPLETE SOLUTION OF THREE-

DIMENSIONAL FLOW

We have already transformed the problem of the three-dimen-

sional flow with shock waves in turbine machinery into two families

of initial value-boundary value problems of hyperbolic equations

with three variables. It also presents the methods to determine

the initial and boundary conditions and then completely establishes

the specific solution problems for the two types of unsteady four-

dimensional flow surfaces. In order to obtain the solution of the

three-dimensional flow, besides the steady solutions of the initial

value-boundary values problems on the two families of flow surfaces,

we must carry out iteration between each other until it becomes

ccnvergent.

In order to save the calculation time, we can use the time pro-

gressing and flow surface iteration method. For the calculation of

each step of Atj or several steps of EAtj, we carry out an iteration

between the two families of flow surfaces. This involves giving

the results of each flow surface calculation and the shape of each

* four-dimensional flow surface (see Equation (1)) to the other flow

surface to carry out the calculation for the next time interval.

It repeats itself regardless of whether a steady solution is

reached in each calculation. When the steady solution is nearly

obtained, iteration between flow surfaces is required for every

time interval. Of course, it is not required to have a completely

steady solution. Finally, when steady solutions are obtained on

2



all the flow surfaces, the final solution of the entire three-

dimensional flow is obtained.

Such procedures to obtain the solution clearly demonstrate

what has been pointed out in [2] that this method cannot be used

to solve a transonic flow with shock wave on a riven flow surface.

In other words, it is through the continuous adjustment of the

position and shape of the flow surface during the solution seeking

process which makes it possible to obtain the two dimensional shock

waves which are consistent with the spatial shock wave on the two

families of flow surfaces. The above procedures closely combine

the calculated shock wave on a single flow surface with the spatial

shock wave so that the time needed to obtain a steady solution can

be reduced.

VII CONCLUSIONS

On the basis of extending the three-dimensional flow surface

model to the four-dimensional unsteady flow surfaces, this paper

transformed the ordinary equations of the non-viscous adiabatic gas

flow in turbine machinery to two types of unsteady flow surfaces

S and S2 and then re-established the corresponding basic equations.

Comparing these equations with those for corresponding steady flow

surfaces, we found that, in addition to the presence of the partial

derivatives of the thickness of the flow sheet vs. time, the shape

of the four-dimensional flow surface has a certain contribution

toward c (or c') and the "flow sheet force". In the energy equa-

tion, there is also a related term c(or e'). These equations are

applicable to the unsteady flow or the steady flow with shock waves.

It should be pointed out that the equations used to obtain

solutions to the transonic flow problem in the literature to date

on the flow surfaces (mainly revolving surfaces) are for time inde-

pendent flow surfaces. The thickness of the flow sheet is also not

iK



related to time. Therefore, the shock wave thus calculnted is

not a part of the real shock wave in the space. Actually, the

basic equations used in the literature are not obtained from the

basic equations used to solve for the spatial shock waves. They

are merely equations with the arbitrary addition of unsteady terms

to the steady flow equations. The result is that it failed to con-

sider the close relations between the two families of flow sur-

faces under the conditions that shock wave existed.

Based on the characteristic curve theory, we derived the char-

acteristic relations between the two types of surfaces and further

determined the boundary conditions for the condition of steady

flow with shock waves. There is a certain degree of flexibility in

the selection of the initial conditions. The proper choice of the

initial condition can completely define the specific solution prob-

lem of transonic flow with shock wave on the two types of flow

surfaces.

Considering the close relation between the flow surfaces when

there are shock waves, in order to obtain the solution of the three-

dimensional flow, we can use the time progressing and flow surface

iterations method to save the calculation time. Thus, after the

difference format is chosen, we can obtain the solution numerically.
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